Skip to main content

Optical Instrumentation for Bioprocess Monitoring

  • Chapter
  • First Online:
Optical Sensor Systems in Biotechnology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 116))

Abstract

In this chapter the optical sensors for oxygen, pH, carbondioxide and optical density (OD) which are essential for bioprocess monitoring are introduced, their measurement principles are explained and their realization and applications are shown. In addition sensors for ethanol and GFP are presented. With the exception of the optical density sensor all others employ certain fluorophores that are sensitive to the designated parameter. These fluorophores along with their optical properties, the sensing mechanisms and their mathematical formulations are described. An important part of this chapter covers the development of the optoelectronic hardware for low cost systems that are able to measure the fluorescence lifetime and fluorescence intensity ratio. The employment of these probes in the bioprocess monitoring is demonstrated in different fermentation examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cha HJ, Wu C-F, Valdes JJ, Rao G, Bentley WE (2000) Observations of green fluorescent protein as a fusion partner in genetically engineered Escherichia coli: monitoring protein expression and solubility. Biotechnol Bioeng 67:565–574

    Article  CAS  Google Scholar 

  2. Suarez A, Güttler A, Strätz M, Staendner LH, Timmis KN, Guzmán CA (1997) Green fluorescent protein-based reporter systems for genetic analysis of bacteria including monocopy applications. Gene 196:69–74

    Article  CAS  Google Scholar 

  3. Errampalli D, Leung K, Cassidy MB, Kostrzynska M, Blears M, Lee H, Trevors JT (1999) Applications of the green fluorescent protein as a molecular marker in environmental microorganisms. J Microbiol Methods 35:187–199

    Article  CAS  Google Scholar 

  4. Niedenthal RK, Riles L, Johnston M, Hegemann JH (1996) Green fluorescent protein as a marker for gene expression and subcellular localization in budding yeast. Yeast 12:773–786

    Article  CAS  Google Scholar 

  5. Shibasaki S, Ueda M, Iizuka T, Hirayama M, Ikeda Y, Kamasawa N, Osumi M, Tanaka A (2001) Quantitative evaluation of the enhanced green fluorescent protein displayed on the cell surface of Saccharomyces cerevisiae by fluorometric and confocal laser scanning microscopic analyses. Appl Microbiol Biotechnol 55:471–475

    Article  CAS  Google Scholar 

  6. Zhang G, Gurtu V, Kain SR (1996) An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells. Biochem Biophys Res Commun 227:707–711

    Article  CAS  Google Scholar 

  7. Pines J (1995) GFP in mammalian cells. Trends Genet 11:326–327

    Article  CAS  Google Scholar 

  8. Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y (1997) Green mice' as a source of ubiquitous green cells. FEBS Lett 407:313–319

    Article  CAS  Google Scholar 

  9. Gong Z, Wan H, Tay TL, Wang H, Chen M, Yan T (2003) Development of transgenic fish for ornamental and bioreactor by strong expression of fluorescent proteins in the skeletal muscle. Biochem Biophys Res Commun 308:58–63

    Article  CAS  Google Scholar 

  10. DeLisa MP, Li J, Rao G, Weigand WA, Bentley WE (1999) Monitoring GFP-operon fusion protein expression during high cell density cultivation of Escherichia coli using an on-line optical sensor. Biotechnol Bioeng 65:54–64

    Article  CAS  Google Scholar 

  11. Randers-Eichhorn L, Albano CR, Sipior J, Bentley WE, Rao G (1997) On-line green fluorescent protein sensor with LED excitation. Biotechnol Bioeng 55:921–926

    Article  CAS  Google Scholar 

  12. Kostov Y, Albano CR, Rao G (2000) All solid-state GFP sensor. Biotechnol Bioeng 70:473–477

    Article  CAS  Google Scholar 

  13. Crameri A, Whitehorn EA, Tate E, Stemmer WPC (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol 14:315–319

    Article  CAS  Google Scholar 

  14. Kramer SF, Kostov Y, Rao G, Bentley WE (2003) Ex vivo monitoring of protein production in baculovirus-infected Trichoplusia ni larvae with a GFP-specific optical probe. Biotechnol Bioeng 83:241–247

    Article  CAS  Google Scholar 

  15. Dalal NG, Cha HJ, Kramer SF, Kostov Y, Rao G, Bentley WE (2006) Rapid non-invasive monitoring of baculovirus infection for insect larvae using green fluorescent protein reporter under early-to-late promoter and a GFP-specific optical probe. Process Biochem 41(4):947–950

    Article  CAS  Google Scholar 

  16. Kostov Y, Tolosa L, O'Connell K, Anderson P, Liu Y, van Beek N, Rao G (2003) Monitoring of DsRed protein concentration in frozen insect larvae. Proceedings SPIE, vol 4967, pp 100–107

    Article  Google Scholar 

  17. Cha HJ, Dalal NG, Pham MQ, Vakharia VN, Rao G, Bentley WE (1999) Insect larval expression process is optimized by generating fusions with green fluorescent protein. Biotechnol Bioeng 65:316–324

    Article  CAS  Google Scholar 

  18. Kostov Y, Harms P, Rao G (2002) On-line optical density measurements in shake flasks. 224th ACS National Meeting, Boston MA, August18. Kostov Y, Harms P, Rao G (2002) On-line optical density measurements in shake flasks. 224th ACS National Meeting, Boston MA, August

    Google Scholar 

  19. Buttler T, Johansson KAJ, Gorton LGO, Marko-Varga GA (1993) On-line fermentation process monitoring of carbohydrates and ethanol using tangential flow filtration and column liquid chromatography. Anal Chem 65:2628–2636

    Article  CAS  Google Scholar 

  20. Johansson K, Jonsson-Petterson G, Gorton L, Marko-Varga G, Csoregi E (1993) A reagentless amperometric biosensor for alcohol detection in column liquid chromatography based on co-immobilized peroxidase and alcohol oxidase in carbon paste. J Biotechnol 31:301–316

    Article  CAS  Google Scholar 

  21. Zinbo M (1994) Determination of one carbon to three-carbon alcohols and water ingasoline/alcohol blends by liquid chromatography. Anal Chem 56:244–247

    Article  Google Scholar 

  22. Azevedo AM, Prazeres DMF, Cabral JMS, Fonseca LP (2005) Ethanol biosensors based on alcohol oxidase. Biosens Bioelectron 21:235–247

    Article  CAS  Google Scholar 

  23. Boujitita M, Hart JP, Pittson R (2000) Development of a disposable ethanol biosensor based on a chemically modified screen-printed electrode coated with alcohol oxidase for the analysis of beer. Biosens Bioelectron 15:257–263

    Article  Google Scholar 

  24. Belghith H, Romette J-L, Thomas D (1987) An enzyme electrode for on-line determination of ethanol and methanol. Biotechnol Bioeng 30:1001–1005

    Article  CAS  Google Scholar 

  25. Mitsubayashi K, Yokoyama K, Takeuchi T, Karube I (1994) Gas-phase biosensor for ethanol. Anal Chem 66:3297–3302

    Article  CAS  Google Scholar 

  26. Chang Q, Lakowicz JR, Rao G (1997) Fluorescence lifetime-based sensing of methanol. Analyst 122:173–177

    Article  CAS  Google Scholar 

  27. Mohr GJ, Lehmann F, Grummt U-W, Spichiger-Keller UE (1997) Fluorescent ligands for optical sensing of alcohols: synthesis and characterization of p-N,N-dialkylamino-trifluoroacetylstilbenes. Anal Chim Acta 344:215–225

    Article  CAS  Google Scholar 

  28. Mohr GJ, Spichiger-Keller UE (1997) Novel fluorescent sensor membranes for alcohol based on p-N,N-dioctylamino-4′-trifluoroacetylstilben. Anal Chim Acta 351:189–196

    Article  CAS  Google Scholar 

  29. Blum P, Mohr GJ, Matern K, Reichert J, Spichiger-Keller UE (2001) Optical alcohol sensor using lipophilic Reichardt's dyes in polymer membranes. Anal Chim Acta 432:269–275

    Article  CAS  Google Scholar 

  30. Orellana G, Gomez-Carneros AM, de Dios C, Garcia-Mertinez AA, Moreno-Bondi MC (1995) Reversible fiber-optic fluorescing of lower alcohols. Anal Chem 67:2231–2238

    Article  CAS  Google Scholar 

  31. Petrova S, Kostov Y, Jeffris K, Rao G (2007) Optical ratiometric sensor for alcohol measurements. Anal Lett 40:715–727

    Article  CAS  Google Scholar 

  32. Chandrasekharan N, Ibrahim S, Kostov Y, Rao G (2007) Ratiometric alcohol sensor based on a polymeric Nile blue. Bioautomation 9:31–39

    Google Scholar 

  33. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, ISBN-13: 978–038731278133. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, ISBN-13: 978–0387312781

    Google Scholar 

  34. Kiernan P, McDonaugh C, MacCraith BD (1994) Ruthenium-doped sol–gel derived silica films: oxygen sensitivity of optical decay times. J Sol–Gel Sci Technol 2:513–517

    Article  CAS  Google Scholar 

  35. Dmitri B, Papkovsky(1995) Phosphorescent complexes of porphyrin ketones: optical properties and application to oxygen sensing. Anal Chem 67:4112–4117

    Article  Google Scholar 

  36. Li X-M, Ruan F-C, Wong K-Y (1993) Optical characteristics of a ruthenium(II) complex immobilized in a silicone rubber film for oxygen measurement. Analyst 118:289–292

    Article  CAS  Google Scholar 

  37. Hartmann P, Leiner MJP, Lippitsch ME (1995) Luminescence quenching behavior of an oxygen sensor based on a Ru(II) complex dissolved in polystyrene. Anal Chem 67:88–93

    Article  CAS  Google Scholar 

  38. McNamara KP, Li X, Stull AD, Rosenzweig Z (1998) Fiber-optic oxygen sensor based on the fluorescence quenching of tris(5-acrylamido,1,10 phenanthroline) ruthenium chloride. Anal Chim Acta 361:73–83

    Article  CAS  Google Scholar 

  39. Kostov Y, Rao G (2003) Low-cost gated system for monitoring phosphorescence lifetimes. Rev Sci Instrum 74:4129

    Article  CAS  Google Scholar 

  40. Harms P, Sipior J, Ram N, Carter GM, Rao G (1999) Low cost phase-modulation measurements of nanosecond fluorescence lifetimes using a lock-in amplifier. Rev Sci Instrum 70(2):1535–1539

    Article  CAS  Google Scholar 

  41. Tolosa L, Kostov Y, Harms P, Rao G (2002) Noninvasive measurement of dissolved oxygen in shake flask. Biotechnol Bioeng 80(5):595–597

    Google Scholar 

  42. Kostov Y, Harms P, Pilato RS, Rao G (2000) Ratiometric oxygen sensing: detection of dual-emission ratio through a single emission filter. Analyst 125:1175–1178

    Article  CAS  Google Scholar 

  43. Goldstein SR, Peterson JP, Fitzgerald RV (1980) A miniature fiber optic pH sensor for physiological use. J Biomech Eng 102(2):141–146

    CAS  Google Scholar 

  44. Jordan DM, Walt DR, Milanovich FP (1987) Physiological pH fiber optic chemical sensor based on energy transfer. Anal Chem 59:437–439

    Article  CAS  Google Scholar 

  45. Liu Z, Liu J, Chen T (2005) Phenol red immobilized PVA membrane for an optical pH sensor with two determination ranges and long-term stability. Sens. Actuators B 107:311–316

    Article  CAS  Google Scholar 

  46. Sotomayor PT, Raimundo IM, de Oliveira Neto G, de Oliveira W (1998) An evaluation of fiber optical chemical sensors for low analysis systems. Sens Actuators B 51:382–390

    Article  CAS  Google Scholar 

  47. Lobnik A, Majcen N, Niederreiter K, Uray G (2001) Optical pH sensor based on the absorption of antenna generated europium luminescence by bromothymol blue in a sol–gel membrane. Sens Actuators B 74:200–206

    Article  CAS  Google Scholar 

  48. Allain LR, Sorasaenee K, Xue Z (1997) Doped thin-film sensors via a sol–gel process for high-acidity determination. Anal Chem 69:3076–3080

    Article  CAS  Google Scholar 

  49. Saari LA, Seitz WR (1982) pH sensor based on the immobilized fuoresceinamine. Anal Chem 54:821–823

    Article  CAS  Google Scholar 

  50. Wolfbeis OS, Fürlinger E, Kroneis H, Marsoner H (1983) Fluorimetric analysis. 1. A study on fluorescent indicators for measuring near neutral (“physiological”) pH values. Fresenius Anal Chem 314:119–124

    Article  CAS  Google Scholar 

  51. Whitaker JE, Haugland RP, Prendergast FG (1991) Spectral and photophysical studies of benzo(c)xanthene dyes: dual emission pH sensors. Anal Biochem 194:330–344

    Article  CAS  Google Scholar 

  52. Offenbacher H, Wolfbeis OS, Fürlinger E (1986) Fluorescence optical sensors for continuous determination of near-neutral pH values. Sens Actuators B 9:73–84

    Article  CAS  Google Scholar 

  53. Zhujun Z, Seitz WRA (1984) Fluorescence sensor for quantifying pH in the range from 6.5 to 8.5. Anal Chim Acta 160:47–55

    Article  Google Scholar 

  54. Xu Z, Rollins A, Alcala R, Marchant RE (1998) A novel fibre-optic pH sensor incorporating carboxy SNAFL-2 and fluorescent wavelength-ratiometric detection. J Biomed Mater Res 39:9–15

    Article  CAS  Google Scholar 

  55. Wolfbeis OS, Offenbacher H (1986) Fluorescence sensor for monitoring ionic strength and physiological pH values. Sens Actuators 9(1):85–91

    Article  CAS  Google Scholar 

  56. Tsien RY (1989) Fluorescent indicators of ion concentrations. Methods Cell Biol 30:127–156

    Article  CAS  Google Scholar 

  57. Lutty GA (1978) The acute intravenous toxicity of stains, dyes, and other fluorescent substances. Toxicol Pharmacol 44:225–229

    Article  CAS  Google Scholar 

  58. Zhujun Z, Sitz WRA (1984) Fluorescence sensor for quantifying pH in the range from 6.5 to 8.5. Anal Chim Acta 160:47–55

    Article  Google Scholar 

  59. Kermis HR, Kostov Y, Harms P, Rao G (2002) Dual excitation ratiometric fluorescent pH sensor for noninvasive bioprocess monitoring: development and application. Biotechnol Prog 18:1047–1053

    Article  CAS  Google Scholar 

  60. Severinghaus JW, Bradley AF (1958) Electrodes for blood pO2 and pCO2 determination. J Physiol 13:515–520

    CAS  Google Scholar 

  61. Weidgans BM (2004) New fluorescent pH-sensor with minimal effects of ionic strength. Dissertation, University of Regensburg, Germany

    Google Scholar 

  62. Mills A, Chang Q, McMurray N (1992) Anal Chem 64:1383

    Article  CAS  Google Scholar 

  63. Mills A, Chang Q (1993) Analyst 118:839

    Article  CAS  Google Scholar 

  64. Mills A, Chang Q (1994) Sens Actuators B 21:83

    Article  CAS  Google Scholar 

  65. Mills A, Lepre A, Wild L (1997) Sens Actuators B: 3839

    Google Scholar 

  66. Chang Q, Randers-Eichhorn L, Lakowicz JR, Rao G (1998) Steam-sterilizable, fluorescence lifetime-based sensing film for dissolved CO2. Biotechnol Prog 14(2):326–331

    Article  Google Scholar 

  67. Sipior J, Randers-Eichhorn L, Lakowicz JR, Carter CM, Rao G (1996) Phase fluorometric optical carbon dioxide gas sensor for fermentation off-gas monitoring. Biotechnol Prog 12:266–271

    Article  CAS  Google Scholar 

  68. Neurauter G, Klimant I, Wolfbeis OS (1999) Microsecond lifetime-based optical carbondioxide sensor using luminescence resonance energy transfer. Anal Chim Acta 382:6775

    Article  Google Scholar 

  69. Ge X, Kostov Y, Rao G (2003) High-stability non-invasive autoclavable naked optical CO2 sensor. Biosensors Bioelectron 18:857–865

    Article  CAS  Google Scholar 

  70. Hung T Lam (2002) development and applications of fiberoptical chemo and biosensors in biotechnology. Dissertation, University of Hannover, Germany

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lam, H., Kostov, Y. (2009). Optical Instrumentation for Bioprocess Monitoring. In: Rao, G. (eds) Optical Sensor Systems in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2008_50

Download citation

Publish with us

Policies and ethics