Skip to main content

Disposable Bioreactors: Maturation into Pharmaceutical Glycoprotein Manufacturing

  • Chapter
  • First Online:
Disposable Bioreactors

Part of the book series: Advances in Biochemical Engineering / Biotechnology ((ABE,volume 115))

Abstract

Modern biopharmaceutical development is characterised by deep understanding of the structure activity relationship of biological drugs. Therefore, the production process has to be tailored more to the product requirements than to the existing equipment in a certain facility. In addition, the major challenges for the industry are to lower the high production costs of biologics and to shorten the overall development time. The flexibility for providing different modes of operation using disposable bioreactors in the same facility can fulfil these demands and support tailor-made processes.

Over the last 10 years, a huge and still increasing number of disposable bioreactors have entered the market. Bioreactor volumes of up to 2,000 L can be handled by using disposable bag systems. Each individual technology has been made available for different purposes up to the GMP compliant production of therapeutic drugs, even for market supply. This chapter summarises disposable technology development over the last decade by comparing the different technologies and showing trends and concepts for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADCC:

Antibody derived cytotoxicity

ASTM:

American society for testing and materials

BPC:

Bioprocess container

CAGR:

Capacity annual growth rate

CAPEX:

Capital expenditures

CHO:

Chinese hamster ovary

CIP:

Cleaning-in-place

CMO:

Contract manufacturing organisation

COGs:

Cost of goods

DO:

Dissolved oxygen

EP:

European pharmacopeia

EPO:

Erythropoietin

EVA:

Ethylene-vinyl-acetate

EVOH:

Ethylene-vinyl-alcohol

FDA:

Food and drug administration

GMP:

Good manufacturing practice

ICH:

International conference on harmonisation

IMP:

Investigational medicinal product

ISO:

International organisation of standardisation

ISTA:

International safe transit association

JP:

Japanese pharmacopeia

mAb:

Monoclonal antibody

MCB:

Master cell bank

MEM:

Minimum essential medium

PAT:

Process analytical technology

PE:

Polyethylene

S.U.B.:

Single use bioreactor

SBA:

Summary basis of approval

SBBSlug:

bubble bioreactor

SIP:

Steam-in-place

USP:

United states pharmacopeia

WCB:

Working cell bank

WFI:

Water for injection

References

  1. Market study (2007) Biomanufacturing strategies: market drivers, build-vs-buy decisions and opportunities in contract relationship management. Business Insights, September

    Google Scholar 

  2. Jain E, Kumar A (2008) Biotechnol Adv 26:46

    Article  CAS  Google Scholar 

  3. Kanda Y, Yamada T, Mori K, Okazaki A, Inoue M, Kitajima-Miyama K, Kuni-Kamochi R, Nakano R, Yano K, Kakita S, Shitara K, Satoh M (2007) Glycobiology 17:104

    Article  CAS  Google Scholar 

  4. Mori K, Iida S, Yamane-Ohnuki N, Kanda Y, Kuni-Kamochi R, Nakano R, Imai-Nishiya H, Okazaki A, Shinkawa T, Natsume A, Niwa R, Shitara K, Satoh M (2007) Cytotechnology 55:109

    Article  CAS  Google Scholar 

  5. Knazek RA, Gullino PM, Kohler PO, Dedrick RL (1972) Science 178:65

    Article  CAS  Google Scholar 

  6. Eibl R, Eibl D (2007) PROCESS special edition, ACHEMA World Wide News 2:8

    Google Scholar 

  7. Terrier B, Courtois D, HĂ©nault N, Cuvier A, Bastin M, Aknin A, Dubreuil J, PĂ©tiard V (2007) Biotechnol Bioeng 96:914

    Article  CAS  Google Scholar 

  8. Kybal J, Sikyta B (1985) Biotechnol Lett 7:467

    Article  Google Scholar 

  9. Singh V (1999) Cytotechnology 30:149

    Article  CAS  Google Scholar 

  10. Marjanovic D, Greller G (2007) Supplement, BioPharm Int 20:38

    Google Scholar 

  11. The Wave bioreactor story. www.wavebiotech.com/about_us/about_us.phpAccessed on the 11th of July 2008

  12. Houtzager E, van der Linden R, de Roo G, Huurman S, Priem P, Sijmons P (2005) BioProcess Int June:3, pp 60–66

    Google Scholar 

  13. Tang YJ, Ohashi R, Hamel JF (2007) Biotechnol Prog 23:255

    Article  CAS  Google Scholar 

  14. Pierce LN, Shabram PW (2004) BioProcess J 4:51

    Google Scholar 

  15. Ohashi R, Singh V, Hamel JF Presented at ESACT conference 2001 in Sweden

    Google Scholar 

  16. Kadwell SH, Hardwicke PI (2007) Methods Mol Biol 388:247

    Article  CAS  Google Scholar 

  17. Negrete A, Kotin RM (2007) J Virol Methods 145:155

    Article  CAS  Google Scholar 

  18. Genzel Y, Olmer RM, Schäfer B, Reichl U (2006) Vaccine 24:6074

    Article  CAS  Google Scholar 

  19. Wolpers F (2006) Biological Europe, conference presentation, Amsterdam, The Netherlands, 19–22 June 2006

    Google Scholar 

  20. Galliher PM (2007) BioProduction, conference presentation, Berlin, Germany October 30–31

    Google Scholar 

  21. Chu L, Robinson DK (2001) Curr Opin Biotechnol 12:180

    Article  CAS  Google Scholar 

  22. Sandig V, Rose T, Winkler K and Brecht R (2005) In: Gellissen G (ed) Production of recombinant proteins: novel microbial and eukaryotic expression. Wiley, Weinheim, p 233

    Google Scholar 

  23. Gardner TA, Ko SC, Yang L, Cadwell JJ, Chung LW, Kao C (2001) Biotechniques 30:422

    CAS  Google Scholar 

  24. Cadwell JJ (2004) Am Biotechnol Lab July:14. vol. 22

    Google Scholar 

  25. Langhammer S, Brecht R, Marx U (2007) Genet Eng News 27:34

    Google Scholar 

  26. Kranjac D (2004) BioProcess Int 2:86

    Google Scholar 

  27. Monge M, Sinclair A (2005) In: Godia F, Fussenegger M (eds) Animal cell technology meets genomics: Proceedings of the 18th ESACT Meeting Granada, Spain, May 11–14, 2003. Springer, Netherlands, p 667

    Google Scholar 

  28. Kundu S (2007) Future Pharmaceuticals, Q4. vol. 100

    Google Scholar 

  29. Fox S (2005) Contract Pharma June:62. vol. 7

    Google Scholar 

  30. Wrankmore M (2005) Biologicals Manufacturing Summit, conference presentation, London, UK, February 23–24

    Google Scholar 

  31. Jenke DR, Story J, Lalani R (2006) Int J Pharm 315:75

    Article  CAS  Google Scholar 

  32. Markovic I (2007) AAPS National Biotechnology Conference. San Diego, June 24–27, 2007

    Google Scholar 

  33. Jenke D (2007) PDA J Pharm Sci Technol 61:17

    Google Scholar 

  34. Vega H, Schultz TJ (2007) Future Pharmaceuticals Q3 2007:96

    Google Scholar 

  35. HyClone (2004) Technical papers series: Disposable Flexible Container Systems for Cell Culture Media and Other Sterile Liquids’; Revision 2, August 2004; Compiled and Edited by the HyClone Technical Staff

    Google Scholar 

  36. Press Release Fresenius, 22.03.2007, http://www.fresenius.de/internet/fag/com/faginpub.nsf/Content/Press+Releases+2007 Accessed on the 11th of July 2008

  37. Harris R (2006) Comparability for Biologics, conference presentation, ZĂ¼rich, Switzerland, June 27–28

    Google Scholar 

  38. Charles I, Lee J, Dasarathy Y (2007) BioPharm Int Suppl Nov. 2:31. vol. 20

    Google Scholar 

  39. Miyake T, Kung CK, Goldwasser E (1977) J Biol Chem 252:5558

    CAS  Google Scholar 

  40. Lin FK, Suggs S, Lin CH, Browne JK, Smalling R, Egrie JC, Chen KK, Fox GM, Martin F, Stabinsky Z (1985) Proc Natl Acad Sci U S A 82:7580

    Article  CAS  Google Scholar 

  41. Yuen CT, Storring PL, Tiplady RJ, Izquierdo M, Wait R, Gee CK, Gerson P, Lloyd P, Cremata JA (2003) Br J Haematol 121:511

    Article  CAS  Google Scholar 

  42. Rader RA (2005) Biopharmaceutical products in the U.S. and European Markets, 4th edn. Bioplan Associates, Rockville, USA, p 121

    Google Scholar 

  43. Rader RA (2005) Biopharmaceutical products in the U.S. and European Markets, 4th edn. Bioplan Associates, Rockville, USA, p 337

    Google Scholar 

  44. Brecht R, Koch S, Riedel M, Sandig V, Marx U (2005) BioPharm Int July:22. vol. 18

    Google Scholar 

  45. High Tech Business Decisions (2007): Biopharmaceutical Contract Manufacturing 2007: Quality, Capacity and Emerging Technologies’; Industry Report

    Google Scholar 

  46. Sinclair A, Monge M (2005) Biopharm Int, Supplement, October:26.vol. 18

    Google Scholar 

  47. Sinclair A, Monge M (2002) Pharma Eng 22:20

    Google Scholar 

  48. Terryberry JW, Thor G (2006) Biodisposables utility and technological advances. D&MDNew York, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Brecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brecht, R. (2009). Disposable Bioreactors: Maturation into Pharmaceutical Glycoprotein Manufacturing. In: Eibl, R., Eibl, D. (eds) Disposable Bioreactors. Advances in Biochemical Engineering / Biotechnology, vol 115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2008_33

Download citation

Publish with us

Policies and ethics