Skip to main content

Characterization, Modeling and Application of Aerobic Granular Sludge for Wastewater Treatment

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering / Biotechnology ((ABE,volume 113))

Abstract

Recently extensive studies have been carried out to cultivate aerobic granular sludge worldwide, including in China. Aerobic granules, compared with conventional activated sludge flocs, are well known for their regular, dense, and strong microbial structure, good settling ability, high biomass retention, and great ability to withstand shock loadings. Studies have shown that the aerobic granules could be applied for the treatment of low- or high-strength wastewaters, simultaneous removal of organic carbon, nitrogen and phosphorus, and decomposition of toxic wastewaters. Thus, this new form of activate sludge, like anaerobic granular sludge, could be employed for the treatment of municipal and industrial wastewaters in near future. This chapter attempts to provide an up-to-date review on the definition, cultivation, characterization, modeling and application of aerobic granular sludge for biological wastewater treatment. This review outlines some important discoveries with regard to the factors affecting the formation of aerobic granular sludge, their physicochemical characteristics, as well as their microbial structure and diversity. It also summarizes the modeling of aerobic granule formation. Finally, this chapter highlights the applications of aerobic granulation technology in the biological wastewater treatment. It is concluded that the knowledge regarding aerobic granular sludge is far from complete. Although previous studies in this field have undoubtedly improved our understanding on aerobic granular sludge, it is clear that much remains to be learned about the process and that many unanswered questions still remain. One of the challenges appears to be the integration of the existing and growing scientific knowledge base with the observations and applications in practice, which this paper hopes to partially achieve.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Morgenroth E, Sherden T, Van Loosdrecht MCM, Heijnen JJ, Wilderer PA (1997) Water Res 31:3191.

    Google Scholar 

  2. Beun JJ, Hendriks A, Van Loosdrecht MCM, Morgenroth E, Wilderer PA, Heijnen JJ (1999) Water Res 33:2283

    CAS  Google Scholar 

  3. Beun JJ, Van Loosdrecht MCM, Heijnen JJ (2001) Biotechnol Bioeng 75:82

    CAS  Google Scholar 

  4. Tay JH, Liu QS, Liu Y (2001) J Appl Microbiol l91:68

    Google Scholar 

  5. Beun JJ, van Loosdrecht MCM, Heijnen JJ (2002) Water Res 36:702

    CAS  Google Scholar 

  6. Su KZ, Yu HQ (2005) Environ Sci Technol 39:2818

    CAS  Google Scholar 

  7. Adav SS, Chen MY, Lee DJ, Ren NQ (2007) Chemosphere 67:1566

    CAS  Google Scholar 

  8. Jiang HL, Tay JH, Maszenan AM, Tay STL (2006) Environ Sci Technol 40:6137

    CAS  Google Scholar 

  9. Tay STL, Zhuang WQ, Tay JH (2005) Environ Sci Technol 39:5774

    CAS  Google Scholar 

  10. Weber SD, Ludwig W, Schleifer KH, Fried J (2007) Appl Env Micr 73:6233

    CAS  Google Scholar 

  11. Liu Y, Tay JH (2004) Biotechnol Adv 22:533

    CAS  Google Scholar 

  12. De Kreuk MK, De Bruin LMM, Van Loosdrecht MCM (2005) Aerobic granular sludge, S. Bathe, MK De Kreuk, BS McSwain, N Schwarzenbeck, eds., IWA, London, 111.

    Google Scholar 

  13. De Kreuk MK, Kishida N, Van Loosdrecht MCM (2007) Water Sci Technol 55:75

    CAS  Google Scholar 

  14. Zheng YM, Yu HQ, Sheng GP (2005) Process Biochem 2005:645

    Google Scholar 

  15. Jiang HL, Tay JH, Tay STL (2002) Letters in Applied Microbiology 35:439

    Google Scholar 

  16. Yi S, Zhuang WQ, Wu B, Tay STL, Tay JH (2006) Envion Sci. Technol 40:239.

    Google Scholar 

  17. Wang SG, Liu XW, Zhang HY, Gong WX, Sun XF, Gao BY (2007) Chemosphere 69:769

    CAS  Google Scholar 

  18. Zhu L, Xu XY, Zheng Y (2005) Acta Scientiae Circumstantiae 25:1148 (in Chinese)

    Google Scholar 

  19. Schwarzenbeck N, Borges JM, Wilderer PA (2005) Appl Microbiol Biotechnol 66:711.

    Google Scholar 

  20. Wang SG, Liu XW, Gong WX, Gao, BY, Zhang DH, Yu HQ (2007) Bioresource Technol 98:2142

    CAS  Google Scholar 

  21. De Kreuk MK Van Loosdrecht MCM (2006) J Environ Eng 132:694

    Google Scholar 

  22. Cassidy DP, Belia E (2005) Water Res 39:4817

    CAS  Google Scholar 

  23. Gaval G, Pernell JJ (2003) Water Res 37:1991

    CAS  Google Scholar 

  24. Martins AMP, Heijnen JJ, Van Loosdrecht MCM (2003) Appl. Microbiol. Biotechnol. 62:586.

    Google Scholar 

  25. Tsuneda S, Nagano T, Hoshino T, Ejiri Y, Noda N, Hirata A (2003) Water Res 37:4965.

    Google Scholar 

  26. Tsuneda S, Ogiwara M, Ejiri Y, Hirata A (2006) Water Sci. Technol 53(3):147

    CAS  Google Scholar 

  27. Moy BYP, Tay JH, Toh SK, Liu Y, Tay STL (2002) Letters in Applied Microbiology 34:407.

    Google Scholar 

  28. Zheng YM, Yu HQ, Liu SJ, Liu XZ (2006) Chemosphere 63:1791.

    Google Scholar 

  29. Hu L, Wang J, Wen X, Qian Y (2005) Process Biochemistry 40:5.

    Google Scholar 

  30. Liu Y, Tay JH (2002) Water Res 36:1653.

    Google Scholar 

  31. Beun JJ, van Loosdrecht MCM, Heijnen JJ (2000) Water Sci Tech 41:41

    CAS  Google Scholar 

  32. Liu YQ, Tay JH (2007) Biochem Eng J 34:1

    Google Scholar 

  33. Chen Y, Jiang W, Liang DT, Tay JH (2007) Appl. Microbiol. Biotechnol. 76:1199

    CAS  Google Scholar 

  34. Adav SS, Lee DJ, Lai JY (2007) Appl. Microbiol. Biotechnol. 77:175

    CAS  Google Scholar 

  35. Ramasmy P, Zhang X (2005) Water Sci. Technol 52(7):217.

    Google Scholar 

  36. Pan S, Tay JH, He YX, Tay STL (2004) Letters in Applied Microbiology 38:158

    CAS  Google Scholar 

  37. Liu YQ, Tay JH (2007) Enzyme Microb. Technol 41:516

    CAS  Google Scholar 

  38. Meyer RL, Saunders AM, Zeng RJ, Keller J, Blackall LL (2003) Fems Ecology 45:253

    CAS  Google Scholar 

  39. Liu YQ, Wu WW, Tay JH, Wang JL (2007) Appl Microbiol Biotechnol 76:211

    CAS  Google Scholar 

  40. Sanin SL, Sanin FD, Bryers JD (2003) Process Biochem 38:909

    CAS  Google Scholar 

  41. McSwain BS, Irvine RL, Wilderer PA (2004) Water Sci Technol 49:19

    CAS  Google Scholar 

  42. Li ZH, Kuba T, Kusuda T (2006) Enzyme and Microbial Technology 38: 670

    Google Scholar 

  43. 43. Liu YQ, Tay JH (2007) Appl Microbiol Biotechnol 75:205

    Google Scholar 

  44. 44. Yang SF, Tay JH, Liu Y (2005) J Environ. Eng 131:86

    Google Scholar 

  45. 45. Peng DC, Bernet N, Delgenes JP, Moletta R (1999) Water Res. 33:890

    Google Scholar 

  46. 46. Mosquera-Corral A, De Kreuk MK, Heijnen JJ, Van Loosdrecht MCM (2005) Water Research 39:2676

    Google Scholar 

  47. 47. De Kreuk MK, Pronk M, Van Loosdrecht MCM (2005) Water Research 39:4476

    Google Scholar 

  48. Yang SF, Li XY, Yu HQ (2007) Process Biochem. 43:8

    Google Scholar 

  49. Liu Y, Wang ZW, Liu YQ, Qin L, Tay JH (2005) Biotechnol. Prog. 21: 621

    Google Scholar 

  50. Zheng YM (2006) PhD Dissertation Hefei, China. University of Science & Technology of China

    Google Scholar 

  51. 51. Wingender J, Neu T R, and Flemming HC 1999 Microbial extracellular polymeric substances: characterization, structure, and function. Springer, Berlin, Germany.

    Google Scholar 

  52. 52. Liu YQ, Liu Y, Tay JH (2004) Appl Microbiol Biotechnol 65:143

    Google Scholar 

  53. 53. Tay JH, Liu QS, Liu Y (2001) Letters in Applied Microbiology 33:222

    Google Scholar 

  54. 54. De Kreuk MK, Van Loosdrecht MCM (2004) Water Sci. Technol. 49:9.

    Google Scholar 

  55. 55. Wang ZW, Liu Y, Tay JH (2005) Appl Microbiol Biotechnol. 69:469

    Google Scholar 

  56. 56. McSwain BS, Irvine RL, Hausner M, Wilderer PA (2005) Appl Environ Microbiol 71:1051

    Google Scholar 

  57. 57. Zhang L, Feng X, Zhu N, Chen J (2007) Enzyme and Microbial Technology 41:551

    Google Scholar 

  58. . Adav SS, Lee DJ, Tay JH (2007) Water Res. 42:1641

    Google Scholar 

  59. 59. Frølund B, Palmgren R, Keiding K, Nielsen PH (1996) Water Res 30:1749.

    Google Scholar 

  60. 60. Wilén BM, Jin B, Lant P (2003) Water Res 37:2127

    Google Scholar 

  61. 61. Sheng GP, Yu HQ (2007) Appl. Microbiol. Biotechnol. 74:208

    Google Scholar 

  62. 62. Chiu ZC, Chen MY, Lee DJ, Wang CH, Lai JY (2007) Water Res 41:884

    Google Scholar 

  63. 63. Chen MY, Lee DJ, Tay JH (2007) Appl Microbiol Biotechnol 73:1463

    Google Scholar 

  64. . Chen MY, Lee DJ, Tay JH, Show KY (2007) Appl Microbiol Biotechnol 75: 467

    Google Scholar 

  65. 65. Azeredo J, Visser J, Oliveari R (1999) Colloids and Interfaces B Biointerfaces 14:141

    Google Scholar 

  66. 66. Liu XM, Sheng GP, Yu HQ (2007) Environ Sci Technol 41:4620

    Google Scholar 

  67. 67. Liu Y, Yang SF, Qin L, Tay JH (2004) Appl Microbiol Biotechnol 64:410

    Google Scholar 

  68. 68. Liu Y, Yang SF, Tay JH, Liu QS, Qin L, Li Y (2004) Enzyme and Microbial Technology 34:37

    Google Scholar 

  69. 69. Dentel SK (1997) Water Sci Technol 36(11):1

    Google Scholar 

  70. 70. Mu Y, Yu HQ (2006) Water Res 40:3596

    Google Scholar 

  71. 71. Zheng YM and Yu HQ (2007) Water Res. 41:39.

    Google Scholar 

  72. 72. Alphenaar PA, Perez MC, Willem JH, van Berkel GL, Lettinga G (1992) Appl. Microbiol. Biotechnol. 36:795

    Google Scholar 

  73. 73. Tay JH, Tay STL, IVanov V, Pan S, Jiang HL, Liu QS (2003) Lett. Appl. Microbial. 36:297

    Google Scholar 

  74. 74. Mu Y, Ren TT, Yu HQ (2008) Environ. Sci. Technol 42:1718

    Google Scholar 

  75. 75. Liu SY, Liu G, Tian YC, Chen YP, Yu HQ, Fang F (2007) Environ. Sci. Technol. 41:5447

    Google Scholar 

  76. Liu SY, Chen YP, Fang F, Liu SH, Ni BJ, Liu G, Tian YC, Xiong Y, Yu HQ (2008) Environ. Sci. Technol. 42: 4467

    Google Scholar 

  77. 77. Liu YQ, Liu Y, Tay JH (2005) Lett. Appl. Microbiol. 40:312

    Google Scholar 

  78. 78. Ivanov V, Tay JH, Tay STL, Jiang HL (2004) Water Sci. Technol. 50(12):147

    Google Scholar 

  79. 79. Chiu ZC, Chen MY, Lee DJ, Tay STL, Tay JH, Show KY (2006) Biotechnol. Bioeng. 94:505

    Google Scholar 

  80. 80. Hof-man J, Zheng D, Westermann P, Ahring BK, Raskin L (2003) Adv. Biochem. Eng. Biot. 81:151

    Google Scholar 

  81. 81. Meyer RL, Saunders AM, Zeng RJ, Keller J, Blackall LL (2003) FEMs Ecology. 45:253

    Google Scholar 

  82. 82. Kishida N, Kim J, Tsuneda S, Sudo R (2006) Water Res. 40:2303

    Google Scholar 

  83. 83. Arrojo B, Mosquera-Corral A, Garrido JM, Mendez R (2004) Water Res. 38:3389

    Google Scholar 

  84. 84. Jiang HL, Tay JH, Maszenana M, Tay STL (2004) Applied and Environmental Microbiology 70:6767

    Google Scholar 

  85. 85. Lemaire R, Yuan Z, Blackall LL, Crocetti GR (2008) Environmental Microbiology 10:354

    Google Scholar 

  86. 86. Tay STL, Ivanov V, Yi S, Zhuang WQ, Tay JH (2002) Microb. Ecol. 44:278

    Google Scholar 

  87. 87. Adav SS, Lee DJ, Tay JH (2007) Environ Technol 28:1227

    Google Scholar 

  88. 88. Sekiguchi Y, Kamagata Y, Harada H (2001) Current Opinion in Biotechnology 12:277

    Google Scholar 

  89. 89. Yuan Z, Blackall LL (2002) Water Res. 36:482

    Google Scholar 

  90. 90. De Kreuk MK, Picioreanu C, Hosseini M, Xavier JB, Van Loosdrecht MCM (2007) Biotechnol. Bioeng. 97:801

    Google Scholar 

  91. 91. De Kreuk MK, Van Loosdrecht MCM (2004) Water. Sci. Technol. 49(11–12):9

    Google Scholar 

  92. 92. Yang SF, Liu QS, Tay JH, Liu Y (2004) Letters in Applied Microbiology 38:106

    Google Scholar 

  93. 93. Xavier JB, de Kreuk MK, Picioreanu C, van Loosdrecht MCM (2007) Environ. Sci. Technol. 41:6410

    Google Scholar 

  94. 94. Su KZ, Yu HQ (2006) Environ. Sci. Technol. 40:4703

    Google Scholar 

  95.  95.Su KZ, Yu HQ (2006) Environ. Sci. Technol. 40:4709

    Google Scholar 

  96.  96.Ni BJ, Yu HQ, Sun YJ (2008) Water Res 42:1325

    Google Scholar 

  97.  97.Hao X, van Loosdrecht MCM, Meijer SCF, Heijnen JJ, Qian Y. (2001) J Environ Eng 127:112

    Google Scholar 

  98. .Ni BJ, Yu HQ (2008) Biotechnol. Bioeng. 100: 664

    Google Scholar 

  99. 99. Ni BJ, Yu HQ (2008) Biotechnol. Bioeng. 99:314

    Google Scholar 

  100. 100. Ni BJ, Yu HQ, Xie WM (2008) Biotechnol. Bioeng. 99:324

    Google Scholar 

  101. 101. Tay JH, Liu QS, Liu Y (2002) Water Sci Technol 46:13

    Google Scholar 

  102. 102. Qin L, Liu Y, Tay JH (2005) Water Res 39:1503

    Google Scholar 

  103. 103. Third KA, Burnett N, Cord-Ruwisch R (2003) Biotechnol Bioeng 83:706

    Google Scholar 

  104. 104. Lin YM, Liu Y, Tay JH (2003) Appl Microbiol Biotechnol 62:430

    Google Scholar 

  105. . Yilmaz G, Lemaire R, Keller J, Yuan Z (2008) Biotechnol. Bioeng. 100:529

    Google Scholar 

  106. 106. Tay JH, Pan S, He YX, Tay STL (2004) J. Environ. Eng. 130:1094

    Google Scholar 

  107. 107. Tay JH, Jiang HL, Tay STL (2004) J Environ Eng 130:1415

    Google Scholar 

  108. 108. Jiang HL, Tay, JH, Tay STL (2002) Lett. Appl Micro 35:439

    Google Scholar 

  109. 109. Adav SS, Chen MY, Lee DJ, Ren NQ (2007) Biotechnol Bioeng 96:844

    Google Scholar 

  110. 110. Jiang HL, Tay STL, Maszenan AM, Tay JH (2006) FEMS Microbiol Ecol 57:182

    Google Scholar 

  111. 111. Jiang HL, Maszenan AM, Tay JH (2007) Appl Microbiol Biotechnol 75:1191

    Google Scholar 

  112. 112. Adav SS, Lee DJ, Ren NQ (2007) Water Res 41:2903

    Google Scholar 

  113. 113. Nancharaiah YV, Schwarzenbeck N, Mohan TVK, Narasimhan SV, Wilderer PA (2006) Water Res 40:1539

    Google Scholar 

  114. 114. Wang J, Yu HQ (2006) Water Sci Tech: Water Supply 6(6):81

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Natural Science Foundation (NSFC) of China (Grants. 20577048, 50625825 and 50738006) for the partial support of this study.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London

About this chapter

Cite this chapter

Liu, XW., Yu, HQ., Ni, BJ., Sheng, GP. (2009). Characterization, Modeling and Application of Aerobic Granular Sludge for Wastewater Treatment. In: Zhong, JJ., Bai, FW., Zhang, W. (eds) Biotechnology in China I. Advances in Biochemical Engineering / Biotechnology, vol 113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2008_29

Download citation

Publish with us

Policies and ethics