Skip to main content

Embryonic Stem Cells: Isolation, Characterization and Culture

  • Chapter
  • First Online:
Engineering of Stem Cells

Part of the book series: Advances in Biochemical Engineering / Biotechnology ((ABE,volume 114))

Abstract

Embryonic stem cells are pluripotent cells isolated from the mammalian blastocyst. Traditionally, these cells have been derived and cultured with mouse embryonic fibroblast (MEF) supportive layers, which allow their continuous growth in an undifferentiated state. However, for any future industrial or clinical application hESCs should be cultured in reproducible, defined, and xeno-free culture system, where exposure to animal pathogens is prevented. From their derivation in 1998 the methods for culturing hESCs were significantly improved. This chapter wills discuss hESC characterization and the basic methods for their derivation and maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA, Itskovitz-Eldor J, Thomson JA (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 227:271–278 [not in library; checked in PubMed]

    Article  CAS  Google Scholar 

  2. 2. Amit M, Itskovitz-Eldor J (2002) Derivation and spontaneous differentiation of human embryonic stem cells. J Anat 225–232

    Google Scholar 

  3. Amit M, Margulets V, Segev H, Shariki C, Laevsky I, Coleman R, and Itskovitz-Eldor J (2003) Human feeder layers for human embryonic stem cells. Biol Reprod 68:2150–2156

    Article  CAS  Google Scholar 

  4. Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K, Chiba T, Yamanaka S (2008) Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321:699–702

    Article  CAS  Google Scholar 

  5. Beattie GM, Lopez AD, Bucay N, Hinton A, Firpo MT, King CC, Hayek A (2005) Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells 23:489–495

    Article  CAS  Google Scholar 

  6. Bhattacharya B, Miura T, Brandenberger R, Mejido J, Luo Y, Yang AX, Joshi BH, Ginis I, Thies RS, Amit M, Lyons I, Condie BG, Itskovitz-Eldor J, Rao MS, Puri RK (2004) Gene expression in human embryonic stem cell lines: unique molecular signature. Blood 103(8):2956–2964

    Article  CAS  Google Scholar 

  7. Bradley A, Evans M, Kaufman MH, Robertson E. (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309:255–256

    Article  CAS  Google Scholar 

  8. Brüstle O, Spiro AC, Karram K, Choudhary K, Okabe S, McKay RDG (1997) In vitro-generated neural precursors participate in mammalian brain development. Proc Natl Acad Sci U S A 94:14809–14814

    Article  Google Scholar 

  9. 9. Brüstle O, Jones KN, Learish RD, Karram K, Choudhary K, Wiestler OD, Duncan ID, McKay RDG (1999) Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285:754–756 [checked original]

    Article  Google Scholar 

  10. Bongso A, Fong CY, Ng SC, Ratnam S (1994) Isolation and culture of inner cell mass cells from human blastocysts. Hum Reprod 9(11):2110–2117

    CAS  Google Scholar 

  11. Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113(5):643–655

    Article  CAS  Google Scholar 

  12. Cheng L, Hammond H, Ye Z, Zhan X, Dravid G (2003) Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture. Stem Cells 21:131–142

    Article  CAS  Google Scholar 

  13. Chung Y, Klimanskaya I, Becker S, Marh J, Lu SJ, Johnson J, Meisner L, Lanza R (2006) Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres. Nature 439:216–219

    Article  CAS  Google Scholar 

  14. Cowan CA, Klimanskaya I, McMahon J, Atienza J, Witmyer J, Zucker JP, Wang S, Morton CC, McMahon AP, Powers D, Melton DA (2004) Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 350(13):1353–1356

    Article  CAS  Google Scholar 

  15. Daley GQ, Ahrlund-Richter L, Auerbach JM, Benvenisty N, Charo RA, Chen G, Deng H, Goldstein LS, Hudson KL, Hyun I, Junn SC, Love J, Lee EH, McLaren A, Mummery CL, Nakatsuji N, Racowsky C, Rooke H, Rossant J, Schöler HR, Solbakk JHH, Taylor P, Trounson AO, Weissman IR, Wilmut I, Yu J, Zoloth R (2007) Science 315:603–604

    Article  CAS  Google Scholar 

  16. Dhara SK, Benvenisty N (2004) Gene trap as a tool for genome annotation and analysis of X chromosome inactivation in human embryonic stem cells. Nucleic Acids Res 32(13):3995–4002

    Article  CAS  Google Scholar 

  17. Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 87:27–45 [checked PubMed]

    CAS  Google Scholar 

  18. Doetschman T, Williams P, Maeda N (1988) Establishment of hamster blastocyst-derived embryonic stem (ES) cells. Dev Biol 127:224–227 [too early for library; checked in PubMed]

    Article  CAS  Google Scholar 

  19. Draper JS, Smith K, Gokhale P, Moore HD, Maltby E, Johnson J, Meisner L, Zwaka TP, Thomson JA, Andrews PW (2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22(1):53–54

    Article  CAS  Google Scholar 

  20. Eiges R, Schuldiner M, Drukker M, Yanuka O, Itskovitz-Eldor J, Benvenisty N (2001) Establishment of human embryonic stem cell-transfected clones carrying a marker for undifferentiated cells. Curr Biol 11:514–518[journal not in library; checked in PubMed.]

    Article  CAS  Google Scholar 

  21. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156 [checked original]

    Article  CAS  Google Scholar 

  22. Giles JR, Yang X, Mark W, Foote RH (1993) Pluripotency of cultured rabbit inner cell mass cells detected by isozyme analysis and eye pigmentation of fetuses following injection into blastocysts or morulae. Mol Reprod Dev 36:130–138 [journal not in library; checked PubMed]

    Article  CAS  Google Scholar 

  23. Graves KH, Moreadith RW (1993) Derivation and characterization of putative pluripotential embryonic stem cells from preimplantation rabbit embryos. Mol Reprod Dev 36:424–433 [journal not in library; checked PubMed]

    Article  CAS  Google Scholar 

  24. Hall LL, Byron M, Butler J, Becker KA, Nelson A, Amit M, Itskovitz-Eldor J, Stein J, Stein G, Ware C, Lawrence JB (2008) X-inactivation reveals epigenetic anomalies in most hESC but identifies sublines that initiate as expected. J Cell Physiol 216(2):445–452

    Article  CAS  Google Scholar 

  25. Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, Beard C, Brambrink T, Wu LC, Townes TM, Jaenisch R (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318(5858):1920–1923

    Article  CAS  Google Scholar 

  26. Hirashima M, Kataoka H, Nishikawa S, Matsuyoshi N, Nishikawa S (1999) Maturation of embryonic stem cells into endothelial cells in an in vitro model of vasculogenesis. Blood 93(4):1253–1263

    CAS  Google Scholar 

  27. Hoffman LM, Hall L, Batten JL, Young H, Pardasani D, Baetge EE, Lawrence J, Carpenter MK (2005) X-inactivation status varies in human embryonic stem cell lines. Stem Cells 23(10):1468–1478

    Article  CAS  Google Scholar 

  28. Hovatta O, Mikkola M, Gertow K, Stromberg AM, Inzunza J, Hreinsson J, Rozell B, Blennow E, Andang M, Ahrlund-Richter L (2003) A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells. Hum Reprod 18:1404–1409

    Article  Google Scholar 

  29. Inzunza J, Gertow K, Stromberg MA, Matilainen E, Blennow E, Skottman H, Wolbank S, Ahrlund-Richter L, Hovatta O (2005) Derivation of human embryonic stem cell lines in serum replacement medium using postnatal human fibroblasts as feeder cells. Stem Cells 23:544–549

    Article  CAS  Google Scholar 

  30. Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, Soreq H, Benvenisty N (2000) Differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers. Mol Med 6:88–95 [journal not in library; checked e-journal]

    CAS  Google Scholar 

  31. Kennedy M, Firpo M, Choi K, Wall C, Robertson S, Kabrun N, Keller G (1997) A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature 386:488–93 [checked original]

    Article  CAS  Google Scholar 

  32. Klimanskaya I, Chung Y, Meisner L, Johnson J, West MD, Lanza R (2005) Human embryonic stem cells derived without feeder cells. Lancet 365:1636–1641

    Article  CAS  Google Scholar 

  33. Klug MG, Soonpaa MH, Koh GY, Field LJ (1996) Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts. J Clin Invest 98:216–224

    Article  CAS  Google Scholar 

  34. Lanzendorf SE, Boyd CA, Wright DL, Muasher S, Oehninger S, Hodgen GD (2001) Use of human gametes obtained from anonymous donors for the production of human embryonic stem cell lines. Fertil Steril 76(1):132–137

    Article  CAS  Google Scholar 

  35. Lerou PH, Yabuuchi A, Huo H, Miller JD, Boyer LF, Schlaeger TM, Daley GQ. (2008) Derivation and maintenance of human embryonic stem cells from poor-quality in vitro fertilization embryos. Nat Protoc 3:923–933

    Article  CAS  Google Scholar 

  36. Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, Crandall LJ, Daigh CA, Conard KR, Piekarczyk MS, Llanas RA, Thomson JA (2006) Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24:185–187

    Article  CAS  Google Scholar 

  37. Lowry WE, Richter L, Yachechko R, Pyle AD, Tchieu J, Sridharan R, Clark AT, Plath K (2008) Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci U S A 105(8):2883–2888

    Article  CAS  Google Scholar 

  38. Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292:1389–1394

    Article  CAS  Google Scholar 

  39. Mateizel I, De Temmerman N, Ullmann U, Cauffman G, Sermon K, Van de Velde H, De Rycke M, Degreef E, Devroey P, Liebaers I, Van Steirteghem A (2006) Derivation of human embryonic stem cell lines from embryos obtained after IVF and after PGD for monogenic disorders. Hum Reprod 21:503–511

    Article  CAS  Google Scholar 

  40. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78:7634–7638 [checked original]

    Article  CAS  Google Scholar 

  41. Meissner A, Wernig M, Jaenisch R (2007) Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 25(10):1177–1181

    Article  CAS  Google Scholar 

  42. Mitalipov S, Kuo HC, Byrne J, Clepper L, Meisner L, Johnson J, Zeier R, Wolf D (2006) Isolation and characterization of novel rhesus monkey embryonic stem cell lines. Stem Cells 24(10):2177–2186

    Article  CAS  Google Scholar 

  43. Mitalipova M, Beyhan Z, First NL (2001) Pluripotency of bovine embryonic stem cell line derived from precompacting embryos. Cloning 3:59–67 [journal not in library; checked e-journal]

    Article  CAS  Google Scholar 

  44. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113(5):631–642

    Article  CAS  Google Scholar 

  45. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26(1):101–106

    Article  CAS  Google Scholar 

  46. Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci U S A 90:8424–8428 [checked original]

    Article  CAS  Google Scholar 

  47. Nakano T, Kodama H, Honjo T (1994) Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 265:1098–101 [checked original]

    Article  CAS  Google Scholar 

  48. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Schöler H, Smith A (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95(3):379–391

    Article  CAS  Google Scholar 

  49. Notarianni E, Galli C, Laurie S, Moor RM, Evans MJ (1991) Derivation of pluripotent, embryonic cell lines from the pig and sheep. J Reprod Fertil Suppl 43:255–260 [too early for library; checked PubMed]

    CAS  Google Scholar 

  50. Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10:55–63

    Article  CAS  Google Scholar 

  51. Shen Y, Matsuno Y, Fouse SD, Rao N, Root S, Xu R, Pellegrini M, Riggs AD, Fan G (2008) X-inactivation in female human embryonic stem cells is in a nonrandom pattern and prone to epigenetic alterations. Proc Natl Acad Sci U S A 105(12):4709–4714

    Article  CAS  Google Scholar 

  52. Silva SS, Rowntree RK, Mekhoubad S, Lee JT (2008) X-chromosome inactivation and epigenetic fluidity in human embryonic stem cells. Proc Natl Acad Sci U S A 105(12):4820–4825

    Article  CAS  Google Scholar 

  53. Sims M, First NL (1994) Production of calves by transfer of nuclei from cultured inner cell mass cells. Proc Natl Acad Sci U S A 91:6143–6147 [checked original (note: volume and year citation printed incorrectly at top of journal page)]

    Article  CAS  Google Scholar 

  54. Solter D, Knowles BB (1975) Immunosurgery of mouse blastocyst. Proc Natl Acad Sci U S A 72:5099–5102 [PubMed]

    Article  CAS  Google Scholar 

  55. Soria B, Roche E, Berná G, León-Quinto T, Reig JA, Martín F (2000) Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 49:157–62 [checked original]

    Article  CAS  Google Scholar 

  56. Suemori H, Tada T, Torii R, Hosoi Y, Kobayashi K, Imahie H, Kondo Y, Iritani A, Nakatsuji N (2001) Establishment of embryonic stem cell lines from cynomolgus monkey blastocysts produced by IVF or ICSI. Dev Dyn 222:273–279

    Article  CAS  Google Scholar 

  57. Reubinoff BE, Pera MF, Fong C, Trounson A, Bongso A (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18:399–404 [checked original]

    Article  CAS  Google Scholar 

  58. Richards M, Fong CY, Chan WK, Wong PC, Bongso A (2002) Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat Biotechnol 20:933–936

    Article  CAS  Google Scholar 

  59. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451(7175):141–146

    Article  CAS  Google Scholar 

  60. Strulovici Y, Leopold PL, O’Connor TP, Pergolizzi RG, Crystal RG (2007) Human embryonic stem cells and gene therapy. Mol Ther 15(5):850–66

    CAS  Google Scholar 

  61. Suss-Toby E, Gerecht S, Amit M, Manor D, Itskovitz-Eldor J (2004) Derivation of a diploid human embryonic stem cell line from a mononuclear zygote. Hum Reprod 19(3):670–675

    Article  Google Scholar 

  62. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  Google Scholar 

  63. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  Google Scholar 

  64. Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Becker RA, Hearn JP (1995) Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci U S A 92:7844–7848 [checked original]

    Article  CAS  Google Scholar 

  65. Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Hearn JP (1996) Pluripotent cell lines derived from common marmoset (Callithrix jacchus) blastocysts. Biol Reprod 55:254–259 [checked original]

    Article  CAS  Google Scholar 

  66. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147 [erratum in Science (1998) 282, 1827] [checked original]

    Article  CAS  Google Scholar 

  67. Vrana KE, Hipp JD, Goss AM, McCool BA, Riddle DR, Walker SJ, Wettstein PJ, Studer LP, Tabar V, Cunniff K, Chapman K, Vilner L, West MD, Grant KA, Cibelli JB (2003) Nonhuman primate parthenogenetic stem cells. Proc Natl Acad Sci U S A 100:11911–11916 (erratum in: Proc Natl Acad Sci U S A. 2004, 101, 693)

    Article  CAS  Google Scholar 

  68. Verlinsky Y, Strelchenko N, Kukharenko V, Rechitsky S, Verlinsky O, Galat V, Kuliev A (2005) Human embryonic stem cell lines with genetic disorders. Reprod Biomed Online 10:105–110

    Article  CAS  Google Scholar 

  69. Wang L, Li L, Menendez P, Cerdan C, Bhatia M (2005) Human embryonic stem cells maintained in the absence of mouse embryonic fibroblasts or conditioned media are capable of hematopoietic development. Blood 105(12):4598–603

    Article  CAS  Google Scholar 

  70. Wobus AM, Holzhausen H, Jakel P, Schoneich J (1984) Characterization of pluripotent stem cell line derived from mouse embryo. Exp Cell Res 152:212–219

    Article  CAS  Google Scholar 

  71. Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, Naito M, Nakao K, Nishikawa S (2000) Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408(6808):92–96

    Article  CAS  Google Scholar 

  72. Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, Carpenter MK (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19:971–974

    Article  CAS  Google Scholar 

  73. Xu C, Rosler E, Jiang J, Lebkowski JS, Gold JD, O’Sullivan C, Delavan-Boorsma K, Mok M, Bronstein A, Carpenter MK (2005) Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells 23:315–323

    Article  CAS  Google Scholar 

  74. Xu RH, Peck RM, Li DS, Feng X, Ludwig T, Thomson JA (2005) Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods 2:185–190

    Article  CAS  Google Scholar 

  75. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluri-potent stem cells. Nature 448(19):313–317

    Article  CAS  Google Scholar 

  76. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  Google Scholar 

  77. Mitalipova M, Calhoun J, Shin S, Wininger D, Schulz T, Noggle S, Venable A, Lyons I, Robins A, Stice S (2003) Human embryonic stem cell lines derived from discarded embryos. Stem Cells 21:521–526

    Article  CAS  Google Scholar 

  78. Amit M, Shariki C, Margulets V, Itskovitz-Eldor J (2004) Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod 70:837–845

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mrs. Hadas O’Neill for editing the manuscript. The research conducted by the authors was partly supported by NIH grant R24RR18405.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Itskovitz-Eldor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Amit, M., Itskovitz-Eldor, J. (2009). Embryonic Stem Cells: Isolation, Characterization and Culture. In: Martin, U. (eds) Engineering of Stem Cells. Advances in Biochemical Engineering / Biotechnology, vol 114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2008_20

Download citation

Publish with us

Policies and ethics