Skip to main content

Fueling Industrial Biotechnology Growth with Bioethanol

  • Chapter
  • First Online:
Biofuels

Abstract

Industrial biotechnology is the conversion of biomass via biocatalysis, microbial fermentation, or cell culture to produce chemicals, materials, and/or energy. Industrial biotechnology processes aim to be cost-competitive, environmentally favorable, and self-sustaining compared to their petrochemical equivalents. Common to all processes for the production of energy, commodity, added value, or fine chemicals is that raw materials comprise the most significant cost fraction, particularly as operating efficiencies increase through practice and improving technologies. Today, crude petroleum represents the dominant raw material for the energy and chemical sectors worldwide. Within the last 5 years petroleum prices, stability, and supply have increased, decreased, and been threatened, respectively, driving a renewed interest across academic, government, and corporate centers to utilize biomass as an alternative raw material. Specifically, bio-based ethanol as an alternative biofuel has emerged as the single largest biotechnology commodity, with close to 46 billion L produced worldwide in 2005. Bioethanol is a leading example of how systems biology tools have significantly enhanced metabolic engineering, inverse metabolic engineering, and protein and enzyme engineering strategies. This enhancement stems from method development for measurement, analysis, and data integration of functional genomics, including the transcriptome, proteome, metabolome, and fluxome. This review will show that future industrial biotechnology process development will benefit tremendously from the precedent set by bioethanol – that enabling technologies (e.g., systems biology tools) coupled with favorable economic and socio-political driving forces do yield profitable, sustainable, and environmentally responsible processes. Biofuel will continue to be the keystone of any industrial biotechnology-based economy whereby biorefineries leverage common raw materials and unit operations to integrate diverse processes to produce demand-driven product portfolios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pass F (1981) J Am Acad Dermatol 4:476

    Article  CAS  Google Scholar 

  2. Ferrandiz-Garcia F (1982) Rev Esp Fisiol 38:353

    CAS  Google Scholar 

  3. Maury J, Asadollahi MA, Moller K, Clark A, Nielsen J (2005) Adv Biochem Eng Biotechnol 100:19

    CAS  Google Scholar 

  4. Hirche C (2006) Trend report no. 16: Industrial Biotechnology. Presented at ACHEMA 2006, Frankfurt am Main, Germany. Available at http://www.achema.de/Trendreports.html , last visited: 10 July 2007

  5. Gavrilescu M, Chisti Y (2005) Biotech Adv 23:471

    CAS  Google Scholar 

  6. Dien BS, Cotta MA, Jeffries TW (2003) Appl Microbiol Biotechnol 63:258

    CAS  Google Scholar 

  7. Russo S, Berkovitz S-TR, Poli G (1995) J Environ Pathol Toxicol Oncol 14:133

    CAS  Google Scholar 

  8. Adrio JL, Demain AL (2006) FEMS Microbiol Rev 30:187

    CAS  Google Scholar 

  9. Smedsgaard J, Nielsen J (2005) J Exp Bot 56:273

    CAS  Google Scholar 

  10. Hong EL, Balakrishnan R, Christie KR, Costanzo MC, Dwight SS, Engel SR, Fisk DG, Hirschman JE, Livstone MS, Nash R, Oughtred R, Park J, Skrzypek M, Starr B, Theesfeld CL, Andrada R, Binkley G, Dong Q, Lane CD, Hitz BC, Miyasato S, Schroeder M, Weng S, Wong ED, Dolinski K, Botstein D, Cherry JM (2006) Saccharomyces Genome Database http://www.yeastgenome.org/ , last visited: 10 July 2007

  11. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Science 274:563

    Google Scholar 

  12. DeRisi JL, Iver VR, Brown PO (1997) Science 278:680

    CAS  Google Scholar 

  13. Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A, Wodicka L, Wolfsberg TG, Gabrielian AE, Landsman D, Lockhart DJ, Davis RW (1998) Mol Cell 2:65

    CAS  Google Scholar 

  14. Förster J, Famili I, Fu P, Palsson BØ, Nielsen J (2003) Genome Res 13:244

    Google Scholar 

  15. Famili I, Förster J, Fu P, Nielsen J, Palsson BØ (2003) Proc Natl Acad Sci USA 100:13134

    CAS  Google Scholar 

  16. Huang HT (1964) Prog Ind Microbiol 5:55

    CAS  Google Scholar 

  17. Sahm H, Eggeling L, de Graad AA (2000) Biol Chem 381:899

    CAS  Google Scholar 

  18. Chatterjee M, Chatterjee SP (1997) Hindustan Antibiot Bull 39:20

    CAS  Google Scholar 

  19. Koffas M, Stephanopoulos G (2005) Curr Opin Biotechnol 16:361

    CAS  Google Scholar 

  20. Lein J (1986) The Panlabs penicillin strain improvement program. In: Vanek Z, Hosta'lek Z (eds) Overproduction of microbial metabolites. Butterworths, Boston, p 105

    Google Scholar 

  21. Thykaer J, Nielsen J (2003) Metab Eng 5:56

    CAS  Google Scholar 

  22. Bresmus C, Hermann U, Bringer-Meyer S, Sahm H (2006) J Biotechnol 124:196

    Google Scholar 

  23. Vemuri GN, Aristidou AA (2005) Microbiol Mol Biol Rev 69:197

    CAS  Google Scholar 

  24. Patil KR, Akesson M, Nielsen J (2004) Curr Opin Biotechnol 15:64

    CAS  Google Scholar 

  25. Stephanopoulos G (1999) Metab Eng 1:1

    CAS  Google Scholar 

  26. Bro C, Nielsen J (2004) Metab Eng 6:204

    CAS  Google Scholar 

  27. Lynd LR, Wyman CE, Gerngross TU (1999) Biotechnol Prog 15:777

    CAS  Google Scholar 

  28. Short PL (2006) C&EN 84:13

    Google Scholar 

  29. Dupont (2005) Energy impact and implications for pricing. DuPont Economist's Office press release. Available at http://www2.dupont.com/Media_Center/en_US/assets/downloads/pdf/Newsletter_Economist_Office.pdf , last visited: 10 July 2007

  30. Corporate Report (2005) The Dow Chemical Company. Available at http://www.dow.com/corporatereport/2005/ , last visited: 10 July 2007

  31. Financial Report (2005) BASF. Available at http://www.berichte.basf.de/en/service/archiv/?id=MZa1eAkIYbcp2pr , last visited: 10 July 2007

  32. Energy Information Administration (2006) Official energy statistics from the US government. US Department of Energy. Available at http://www.eia.doe.gov , last visited: 10 July 2007

  33. D'Aquino R (2006) Chem Engin Prog 102:12

    Google Scholar 

  34. Energy Information Administration (2006) Petroleum marketing annual 2005. US Department of Energy. Available at http://www.eia.doe.gov/pub/oil_gas/petroleum/data_publications/petroleum_marketing_annual/historical/2005/pma_2005.html , last visited: 10 July 2007

  35. Central Intelligence Agency (2006) The World Fact Book. CIA, US. Available at https://www.cia.gov/cia/publications/factbook/ , last visited: 10 July 2007

  36. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R (2006) Science 311:484

    CAS  Google Scholar 

  37. Herrera S (2004) Nat Biotechnol 22:671

    CAS  Google Scholar 

  38. Schubert C (2006) Nat Biotechnol 24:777

    CAS  Google Scholar 

  39. The Royal Dutch Shell Company (2005) Annual report. Available at http://www.shell.com , last visited: 10 July 2007

  40. DuPont (2005) Annual review. Available at http://www.dupont.com , last visited: 10 July 2007

  41. Total (2005) Global report. Available at http://www.total.com , last visited: 10 July 2007

  42. Buarque de Hollanda J, Poole A (2001) Sugarcane as an energy source in Brazil. Institute Nacional de Eficiéncia Energética. Available at http://www.inee.org.br/down_loads/about/SUGARCANE&ENERGY.pdf , last visited: 10 July 2007

  43. Renewable Fuels Association (2006) From niche to nation: ethanol industry outlook 2006. RFA. Available at http://www.ethanolrfa.org/objects/pdf/outlook/outlook_2006.pdf , last visited: 10 July 2007

  44. Bailey BK (1996) Performance of ethanol was a transportation fuel. In: Wyman CE (ed) Handbook on bioethanol: production and utilization. Taylor & Francis, Washington DC, p 37

    Google Scholar 

  45. Bayraktar H (2005) Renewable Energy 30:1733

    CAS  Google Scholar 

  46. Hseih W, Chen R, Wu T, Lin T (2002) Atmospher Environ 36:403

    Google Scholar 

  47. Wu C-W, Chen R-H, Pu J-Y, Lin T-H (2004) Atmospher Environ 38:7093

    CAS  Google Scholar 

  48. Yücesu HS, Topgül T, Çinar C, Melih O (2006) Appl Thermal Engin 26:2272

    Google Scholar 

  49. Schmidt TC, Schirmer M, Wei H, Haderlein SB (2003) J Contam Hydrol 70:173

    Google Scholar 

  50. Howd RA (2002) Int J Toxicol 21:389

    CAS  Google Scholar 

  51. Williams PRD, Benton L, Sheehan PJ (2004) California Risk Ana 24:621

    Google Scholar 

  52. EuropaBio (2006) Annual report 2006. Available at http://www.europabio.org , last visited: 10 July 2007

  53. Biofuels Research Advisory Council (2006) Biofuels in the European Union: a vision for 2030 and beyond. BRAC. Available at http://ec.europa.eu/research/energy/pdf/draft_vision_report_en.pdf , last visited: 10 July 2007

  54. Bohlmann GM, César MA (2006) Industrial Biotechnology 2:2

    Google Scholar 

  55. Perlack RD, Write LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Oak Ridge, TN. Available at http://www.osti.gov/bridge , last visited: 10 July 2007

  56. Gray KA, Zhao L, Emptage M (2006) Curr Opin Chem Biol 10:141

    CAS  Google Scholar 

  57. Ideker T, Galitski T, Hood L (2001) Annu Rev Genomics Hum Genet 2:343

    CAS  Google Scholar 

  58. Thiel K (2006) Nat Biotech 24:1055

    CAS  Google Scholar 

  59. Patterson SD, Aebersold RH (2003) Nat Genet Suppl 33:311

    CAS  Google Scholar 

  60. Stephanopoulos G (2002) Nat Biotechnol 20:707

    Google Scholar 

  61. Oliver DJ, Nikolau B, Wurtele ES (2002) Met Eng 4:98

    CAS  Google Scholar 

  62. Lee SY, Lee DY, Kim TY (2005) Trends Biotechnol 23:349

    CAS  Google Scholar 

  63. Bro C, Nielsen J (2004) Met Eng 6:204

    CAS  Google Scholar 

  64. Han M-J, Lee SY (2003) Proteomics 3:2317

    CAS  Google Scholar 

  65. Hermann T (2004) Curr Opin Biotechnol 15:444

    CAS  Google Scholar 

  66. Endy D, Brent R (2001) Nature 409:391

    CAS  Google Scholar 

  67. Selinger DW, Wright MA, Church GM (2003) Trends Biotechnol 21:251

    CAS  Google Scholar 

  68. Stelling J (2004) Curr Opin Microbiol 7:513

    Google Scholar 

  69. Wiechert W (2002) J Biotechnol 94:37

    CAS  Google Scholar 

  70. Liolios K, Tavernarakis N, Hugenholtz P, Kyrpides NC (2006) Nucleic Acid Res 1:34

    Google Scholar 

  71. Genomes Online Database (GOLD) (2006) http://www.genomesonline.org/ , last visited: 10 July 2007

  72. Edwards JS, Ibarra RU, Palsson BØ (2001) Nature Biotechn 19:125

    CAS  Google Scholar 

  73. Edwards JS, Palsson BØ (2000) Proc Natl Acad Sci USA 97:5528

    CAS  Google Scholar 

  74. Duarte NC, Palsson BØ, Fu P (2004) BMC Genom 5:63

    Google Scholar 

  75. Forster J, Famili I, Palsson BØ, Nielsen J (2003) OMICS 7:193

    Google Scholar 

  76. Ferrer M, Martinez-Abarca F, Golyshin PN (2005) Curr Opin Biotechnol 16:588

    CAS  Google Scholar 

  77. Diener SE, Chellappan MK, Michell TK, Dunn-Coleman N, Ward M, Dean RA (2004) Fungal Genet Biol 41:1077

    CAS  Google Scholar 

  78. Foreman PK, Brown D, Dankmeyer L, Dean R, Diener S, Dunn-Coleman NS, Goedegebuur F, Houfec TD, Englan GJ, Kelley AS, Meerman HJ, Michell T, Mitchinson H, Olivares HA, Teunissen PJM, Yao J, Ward M (2003) J Biol Chem 278:31988

    Google Scholar 

  79. Sheir-Neiss G, Montenecourt BS (1984) Appl Microbiol Biotechnol 20:46

    CAS  Google Scholar 

  80. Bansal AK (2005) Microb Cell Factories 4:19

    Google Scholar 

  81. Hartl D, Jones EW (2005) Genetics: analysis of genes and genomes, 6th edn. Jones and Bartlett, Boston

    Google Scholar 

  82. Lynch MD, Gill RT, Stephanopoulos G (2004) Metab Eng 6:177

    CAS  Google Scholar 

  83. Gill RT (2003) Curr Opin Biotechnol 14:484

    CAS  Google Scholar 

  84. Wu J, Zhang N, Hayes A, Panoutsopoulou K, Oliver SG (2004) Proc Natl Acad Sci 101:3148

    CAS  Google Scholar 

  85. Boer VM, de Winde JH, Pronk JT, Piper MD (2003) J Biol Chem 278:3265

    CAS  Google Scholar 

  86. Phelps TJ, Palumbo AV, Beliaev AS (2002) Curr Opin Biotechnol 13:20

    CAS  Google Scholar 

  87. Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, Bumgarner R, Goodlett DR, Aebersold R, Hood L (2001) Science 292:929

    CAS  Google Scholar 

  88. Erasmus DJ, van der Me G, van Vuuren HJ (2003) FEMS Yeast Res 3:375

    CAS  Google Scholar 

  89. DeRisi JL, Iyer VR, Brown PO (1997) Science 278:680

    CAS  Google Scholar 

  90. Cakir T, Kirdar B, Ulgen KO (2004) Biotechnol Bioeng 86:251

    CAS  Google Scholar 

  91. Patil KR, Nielsen J (2005) Proc Natl Acad Sci USA 102:2685

    CAS  Google Scholar 

  92. Cakir T, Patil KR, Onsan Zi, Ulgen KO, Kirdar B, Nielsen J (2006) Mol Syst Biol 2:50

    Google Scholar 

  93. Sonderegger M, Jeppsson M, Hahn-Hägerdal B, Sauer U (2004) Appl Environ Microbiol 70:2307

    CAS  Google Scholar 

  94. Koffas M, Stephanopoulos G (2005) Curr Opin Biotechnol 16:361

    CAS  Google Scholar 

  95. Wendisch VF, Bott M, Eikmanns BJ (2006) Curr Opin Microbiol 9:268

    CAS  Google Scholar 

  96. Wendisch VF (2003) J Biotechnol 104:273

    CAS  Google Scholar 

  97. Anderson NL, Matheson AD, Steiner S (2000) Curr Opin Biotechnol 11:408

    CAS  Google Scholar 

  98. Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Williams KL (1995) Biotech Gen Eng Rev 13:19

    Google Scholar 

  99. Kolkman A, Slijper M, Heck AJR (2005) Trends Biotechnol 23:59

    Google Scholar 

  100. Lee JW, Lee SY, Song H, Yoo J-S (2006) Proteomics 6:3550

    CAS  Google Scholar 

  101. Chen C, Snedecor B, Nishihara JC, Joly JC, McFarland N, Andersen DC, Battersby JE, Champion KM (2004) Biotechnol Bioeng 85:463

    CAS  Google Scholar 

  102. Han M-J, Jeong KJ, Yoo J-S, Lee Y (2003) Appl Environ Microbiol 69:5772

    CAS  Google Scholar 

  103. Aldor IS, Krawitz DC, Forrest W, Chen C, Nishihara JC, Joly JC, Champion KM (2005) Appl Environm Microbiol 4:1717

    Google Scholar 

  104. Ullrich B, Ushkaryov YA, Sudhof TC (1995) Neuron 14:497

    CAS  Google Scholar 

  105. Han MJ, Yoon SS, Lee SY (2001) J Bacteriol 183:301

    CAS  Google Scholar 

  106. Lee PC, Lee SY, Hong SH, Chang HN (2002) Appl Microbiol Biotechnol 56:663

    Google Scholar 

  107. See SY, Park SJ, Lee Y, Lee SH (2005) Biotechnological processes for the production of monomers of subsequent chemical polymer synthesis. In: Steinbüchel A, Doi Y (eds) Biotechnology of biopolymers. Wiley-VCH, Germany, p 1081

    Google Scholar 

  108. Werpy T, Petersen G (2004) Top value added chemicals from biomass. Office of the Biomass Program. Available at http://www.nrel.gov/docs/fy04osti/35523.pdf , last visited 10 July 2007

  109. Lin H, Bennett GN, San KY (2005) Metab Eng 7:116

    CAS  Google Scholar 

  110. Song H, Lee SY (2006) Enz Microb Technol 39:352

    CAS  Google Scholar 

  111. Kim P, Laivenieks M, Vieille C, Zeikus JG (2004) Appl Environ Microbiol 70:1238

    CAS  Google Scholar 

  112. Zeikus JG, Jain M, Elankovan P (1999) App Microbiol Biotechn 51:545

    CAS  Google Scholar 

  113. Salusjarvi L, Poutanen M, Pitkanen JP, Koivistoinen H, Aristidou A, Kalkkinen N, Ruohonen L, Pentilla M (2003) Yeast 20:295

    CAS  Google Scholar 

  114. Olsson L, Jørgensen H, Krogh K, Roca C (2004) Bioethanol Production from Lignocellulose Material. In: Polysaccharides: Structural Diversity and Functional Versatility. Marcel Dekker, New York, p 957

    Google Scholar 

  115. Lynd LR, Wyman C, Laser M, Johnson D, Landucci R (2002) Strategic Biorefinery Analysis: Analysis of Biorefineries, Subcontract Report NREL/SE-510-35578

    Google Scholar 

  116. Lynd LR, Wyman C, Laser M, Johnson D, Landucci R (2002) Strategic Biorefinery Analysis: Review of Existing Biorefinery Examples, Subcontract Report NREL/SE-510-34895

    Google Scholar 

  117. Smedsgaard J, Nielsen J (2005) J Experim Bot 56:273

    CAS  Google Scholar 

  118. Kell DB (2004) Curr Opin Microbiol 7:296

    CAS  Google Scholar 

  119. Tweeddale H, Notley-McRobb L, Ferenci T (1998) J Bacteriol 180:5109

    CAS  Google Scholar 

  120. Trethewey RN, Krotzky AJ, Willmitzer L (1999) Curr Opin Plant Biotechnol 2:83

    CAS  Google Scholar 

  121. Oksman-Caldentey KM, Saito K (2005) Curr Opin Biotechnol 16:174

    CAS  Google Scholar 

  122. Harrigan GG, Goodacre R (eds) (2003) Metabolic profiling: its role in biomarker discovery and gene function analysis. Kluwer Academic, Boston

    Google Scholar 

  123. Park SJ, Lee SY, Cho J, Kim TY, Lee JW, Park JH, Han MJ (2005) Appl Microbiol Biotechnol 68:567

    CAS  Google Scholar 

  124. Panagiotou G, Christakopoulos P, Villas-Boas SG, Olsson L (2005) Enz Microb Technol 36:100

    CAS  Google Scholar 

  125. Panagiotou G, Christakopoulos P, Olsson L (2005) J Biotechnol 118:304

    CAS  Google Scholar 

  126. Panagiotou G, Villas-Boas SG, Christakopoulos P, Nielsen J, Olsson L (2005) J Biotechnol 115:425

    CAS  Google Scholar 

  127. Panagiotou G, Christakopoulos P, Olsson L (2005d) Enz Microb Technol 36:693

    CAS  Google Scholar 

  128. Salminen JG, Streeter SO (1990) Biochim Biophys Acta 1035:257

    Google Scholar 

  129. Zaldivar J, Borges A, Johansson B, Smits HP, Villas-Boas SG, Nielsen L, Olsson L (2002) Appl Microbiol Biotechnol 59:436

    CAS  Google Scholar 

  130. Devantier R, Scheithauer B, Villas-Boas SG, Pedersen S, Olsson L (2005) Biotechnol Bioengin 90:703

    CAS  Google Scholar 

  131. Villas-Boas SG, Åkesson M, Nielsen J (2005) Biosynthesis of glyoxylate from glycine in Saccharomyces cerevisiae. FEMS Yeast Res 5:703

    CAS  Google Scholar 

  132. Wang QZ, Wu CY, Chen T, Chen X, Zhao XM (2006) Appl Microbiol Biotechnol 70:151

    CAS  Google Scholar 

  133. Stephanopoulos GN, Aristidou AA, Nielsen J (1998) Metabolic engineering: principles and methodologies. Academic, New York

    Google Scholar 

  134. Stephanopoulos GN (1999) Metab Eng 1:1

    CAS  Google Scholar 

  135. Maaheimo H, Fiaux J, Cakas ZP, Bailey JE, Sauer U, Szyperski T (2001) Eur J Biochem 268:2464

    CAS  Google Scholar 

  136. Wittmann C (2002) Adv Biochem Eng Biotechnol 74:39

    CAS  Google Scholar 

  137. Sauer U (2004) Curr Opin Biotechnol 15:58

    CAS  Google Scholar 

  138. Grotkjaer T, Christakopoulos P, Nielsen J, Olsson L (2005) Metab Eng 7:437

    CAS  Google Scholar 

  139. Roca C, Nielsen J, Olsson L (2003) Appl Environ Microbiol 69:4732

    CAS  Google Scholar 

  140. Sonderegger M, Schümperli M, Sauer U (2004) Appl Environ Microbiol 70:2892

    CAS  Google Scholar 

  141. Herrard MJ, Fong SS, Palsson BØ (2006) PLos Comput Biol 2:e72

    Google Scholar 

  142. Fischer E, Zamboni N, Sauer U (2004) Anal Biochem 325:308

    CAS  Google Scholar 

  143. Zamboni N, Fischer E, Sauer U (2005) BMC Bioinformatics 6:209

    Google Scholar 

  144. Yang TH, Wittmann C, Heinzle E (2006) Metab Eng 8:417

    CAS  Google Scholar 

  145. Yang TH, Wittmann C, Heinzle E (2006) Metab Eng 8:432

    CAS  Google Scholar 

  146. Editorial (2006) Nat Biotechnol 24:725

    Google Scholar 

  147. Editorial (2006) Nat Biotechnol 24:726

    Google Scholar 

  148. Herrera S (2006) Nat Biotechnol 24:755

    CAS  Google Scholar 

  149. Vertes AA, Inui M, Yukawa H (2006) Nat Biotechnol 24:761

    CAS  Google Scholar 

  150. Brevan MW, Franssen MCR (2006) Nat Biotechnol 24:765

    Google Scholar 

  151. Malça J, Freire F (2006) Energy 31:3362

    Google Scholar 

  152. Cardona Alzate CA, Sánchez Toro OJ (2005) Energy 31:2447

    Google Scholar 

  153. Tonon S, Brown MT, Luchi F, Mirandola A, Stoppato A, Ulgiati S (2006) Energy 31:149

    Google Scholar 

  154. Bro C, Regenberg B, Förster J, Nielsen J (2006) Metab Eng 8:102

    CAS  Google Scholar 

  155. Parker C, Barnell WO, Snoep JL, Ingram LO, Conway T (1995) Mol Microbiol 15:795

    CAS  Google Scholar 

  156. Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MS, de Laat WT, den Ridder JJ, Op den Camp HJ, van Dijken JP, Pronk JT (2003) FEMS Yeast Res 4:69

    CAS  Google Scholar 

  157. Kuyper M, Hartog MMP, Toirkens MJ, Almering MJH, Winkler AA, van Dijken JP, Pronk JT (2005) FEMS Yeast Res 5:399

    CAS  Google Scholar 

  158. Kuyper M, Torikens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT (2005) FEMS Yeast Res 5:925

    CAS  Google Scholar 

  159. Kuyper M, Winkler AA, van Dijken JP, Pronk JT (2004) FEMS Yeast Res 4:655

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisbeth Olsson .

Editor information

Lisbeth Olsson

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Otero, J.M., Panagiotou, G., Olsson, L. (2007). Fueling Industrial Biotechnology Growth with Bioethanol. In: Olsson, L. (eds) Biofuels. Advances in Biochemical Engineering/Biotechnology, vol 108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2007_071

Download citation

Publish with us

Policies and ethics