Skip to main content

Raw Materials

  • Chapter
  • First Online:
White Biotechnology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 105))

Abstract

Industrial fermentations need raw materials that fulfill the requirements of the organism (suitable carbon and nitrogen source, minerals and specific nutrients) and that are available in a high quantity and quality. This contribution gives a comprehensive overview, including the new trends and progress of recent years. The use of feedstock based on several raw materials such as sugar, starch, inulin and lignocellulose is discussed. Biomass-based raw materials are by far the most applied feedstocks for fermentation. However, there are also raw materials for fermentations derived from the petrochemical industry. These substrates are especially hydrocarbons, alcohols and carboxylic acids. Some applications are given in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cejka A (1985) Preparation of media. In: Rehm H-J, Reed G (eds) Biotechnology, vol 2, 1st edn. Wiley, Weinheim, p 629

    Google Scholar 

  2. Greasham RL (1993) Media for Microbial Fermentations. In: Rehm H-J, Reed G (eds) Biotechnology, vol 3, 2nd edn. Wiley, Weinheim, p 127

    Google Scholar 

  3. Dahod SK (1999) Media for microbial fermentations. In: Demain AR, Davies JE (eds) Manual of industrial microbiology and biotechnology, 2nd edn. ASM, Washington, p 213

    Google Scholar 

  4. Walker GM (2000) Media for industrial fermentations. In: Robinson RK (ed) Encyclopedia of food microbiology. Academic, San Diego, p 674

    Google Scholar 

  5. Atkinson B, Mavituna F (1991) Biochemical engineering and biotechnology handbook, 2nd edn. Stockton, New York

    Google Scholar 

  6. Lichtenthaler FW (2002) Carbohydrates. In: Ullmanns encyclopedia of industrial chemistry, vol 6, 6th edn. Wiley, Weinheim, p 237

    Google Scholar 

  7. Lichtenthaler FW (2006) The key sugars of biomass: availability, present non-food applications and potential industrial development lines. In: Kamm M, Gruber PR (eds) Biorefineries, biobased industrial processes and products. vol 2. Wiley, Weinheim, p 3

    Google Scholar 

  8. Stoppok E, Buchholz K (1996) Sugar-based raw materials for fermentation applications. In: Rehm H-J, Reed G (eds) Biotechnology. vol 6, 2nd edn. Wiley, Weinheim, p 5

    Google Scholar 

  9. De Troostembergh J-C (1996) Starch-based raw materials for fermentation applications. In: Rehm H-J, Reed G (eds) Biotechnology. vol 6, 2nd edn. Wiley, Weinheim, p 31

    Google Scholar 

  10. Buchholz K, Ekelhof B, Vorwerg W, Radosta S, Dijksterhuis J, Walter M (2005) Technologie der Kohlenhydrate. In: Dittmeyer R, Keim W, Kreysa G, Oberholz A (eds) Winnacker-Küchler: Chemische Technik, Prozesse und Produkte. vol 8, 5th edn. Wiley, Weinheim, p 315

    Google Scholar 

  11. Hepner L (2004) Carbohydrate feedstocks for the fermentation industry. Hepner, London

    Google Scholar 

  12. Kosaric N, Farkas A, Sahm H, Bringer-Meyer S, Goebel O, Mayer D (1987) Ethanol. In: Ullmanns encyclopedia of industrial chemistry. vol A9. Wiley, Weinheim, p 587

    Google Scholar 

  13. Roehr M (2001) The biotechnology of ethanol. Wiley, Weinheim

    Google Scholar 

  14. Sun Y, Cheng J (2002) Bioresour Technol 83:1

    CAS  Google Scholar 

  15. Badger PC (2002) Ethanol from cellulose: A general review. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS, Alexandria, p 17

    Google Scholar 

  16. Bothast RJ, Schlicher MA (2005) Appl Microbiol Biotechnol 67:19

    CAS  Google Scholar 

  17. Olson ES (2001) Conversion of lignocellulosic material to chemicals and fuels. Department of Energy, Washington, DC

    Google Scholar 

  18. Department of Energy (2002) Evaluation of the potential for the production of lignocellulosic based ethanol at existing corn ethanol facilities. Final Subcontract Report. Department of Energy, Washington, DC

    Google Scholar 

  19. Tsao GT, Brainard AP (2001) Recent progress in bioconversion of lignocellulosics. Advances in biochemical engineering, biotechnology, vol 65. Springer, Berlin Heidelberg New York

    Google Scholar 

  20. Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361

    Google Scholar 

  21. Jacques KA, Lyons TP, Kelsall DR (2003) The alcohol text book. Nottingham University Press, Nottingham

    Google Scholar 

  22. Zuckerwirtschaft Europa (2006) Dr. Albert Bartens, Berlin

    Google Scholar 

  23. A.C. Toepfer International (2005) Statistical information about the grain and feedstuff market. Edition December 2005, Hamburg

    Google Scholar 

  24. Tester RF, Karkalas J (2002) Starch. In: Vandamme EJ, De Baets S, Steinbüchel A (eds) Biopolymers. vol 6. Wiley, Weinheim, p 381

    Google Scholar 

  25. Fuglie KO, Oates CG, Xie J (2005) Root crops, starch and sgro-industrialization in asia, Seminar. Rutin Puslitbang Tanaman Pangan, Bogor, July ,14

    Google Scholar 

  26. Kondo A, Shigechi H, Abe M, Uyama K, Matsumoto T, Takahashi S, Ueda M, Tanaka A, Kishimoto M, Fukuda H (2002) Appl Microbiol Biotechnol 58:291

    CAS  Google Scholar 

  27. Shigechi H, Koh J, Fujita Y, Matsumoto T, Ueda M, Satoh E, Fukuda H, Kondo A (2004) Appl Environ Microbiol 70:5037

    CAS  Google Scholar 

  28. Franck A, De Leenheer L (2002) Inulin. In: Vandamme EJ, De Baets S, Steinbüchel A (eds) Biopolymers. vol 6. Wiley, Weinheim, p 439

    Google Scholar 

  29. Monti A, Amaducci MT, Pritoni G, Venturi G (2005) J Exp Botany 56:1389

    CAS  Google Scholar 

  30. Cedeno M (1995) Crit Rev Biotechnol 15:1

    CAS  Google Scholar 

  31. Han YW (1978) Adv Appl Microbiol 23:119

    Article  CAS  Google Scholar 

  32. Leathers TD (2003) FEMS Yeast Res 3:133

    CAS  Google Scholar 

  33. Saha BC (2003) J Ind Microbiol Biotechnol 30:279

    CAS  Google Scholar 

  34. Gallert C, Winter J (2002) Naturwissenschaften 89:483

    CAS  Google Scholar 

  35. Dekker RF (1989) Braz J Med Biol Res 22:1441

    CAS  Google Scholar 

  36. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbiol Mol Biol Rev 66:506

    CAS  Google Scholar 

  37. Vandamme EJ, De Baets S, Steinbüchel A (2002) Lignin, humic acids and coal. Biopolymers, vol 1. Wiley, Weinheim

    Google Scholar 

  38. Klemm D, Schmauder H-P, Heinze T (2002) Cellulose. In: Vandamme EJ, De Baets S, Steinbüchel A (eds) Biopolymers. vol 6. Wiley, Weinheim, p 275

    Google Scholar 

  39. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Bioresour Technol 96:673

    CAS  Google Scholar 

  40. Kaminsky W, Meier D, Puls J (2005) Chemisch-technische Verwertung von Biomasse. In: Dittmeyer R, Keim W, Kreysa G, Oberholz A (eds) Winnacker-Küchler: Chemische Technik, Prozesse und Produkte. vol 5, 5th edn. Wiley, Weinheim, p 1270

    Google Scholar 

  41. Lin Y, Tanaka S (2006) Appl Microbiol Biotechnol 69:627

    CAS  Google Scholar 

  42. Himmel ME, Baker JO, Saddler JN (2001) Glycosyl hydrolases for biomass conversion. ACS Symposium Series 769. Oxford Press, Washington DC

    Google Scholar 

  43. Lohmann U (2003) Holz-Lexikon, 4th edn. DRW, Leinfelden-Echterdingen, p 614

    Google Scholar 

  44. Jones DT, Woods TR (1986) Microbiol Rev 50:484

    CAS  Google Scholar 

  45. Jones DT (2001) Applied acetone-butanol fermentation. In: Bahl H, Dürre P (eds) Clostridia. Biotechnical and medical applications. Wiley, Weinheim, p 125

    Google Scholar 

  46. Zverlov VV, Berezina OV, Schwarz WH (2005) ABE from lignocellulosic biomass – Bacterial solvent production in the former Soviet Union. International workshop on biorefinery, Kyoto, Japan, 9–10 February 2005, p 24

    Google Scholar 

  47. Zverlov VV, Berezina O, Velikodvorskaya GA, Schwarz WH (2006) Appl Microbiol Biotechnol 71:587

    CAS  Google Scholar 

  48. De Palma Revillion JP, Brandelli A, Ayub MAZ (2003) Braz Arc Biol Techno 46:121

    Google Scholar 

  49. Hüsing B, Angerer G, Gaisser S, Marscheider-Weidemann F (2003) Biotechnologische Herstellung von Wertstoffen unter besonderer Berücksichtigung von Energieträgern und Biopolymeren. Study for the German Federal Environmental Agency (UBA), project number: UFOPLAN 200 66 301

    Google Scholar 

  50. Zambriskie DW, Armiger WB, Phillips DH, Albano PA (1999) Traders' guide to fermentation media formulation, 5th edn. Traders Protein, Memphis (USA)

    Google Scholar 

  51. Coté A, Brown WA, Cameron D, Van Walsum GP (2004) J Dairy Sci 87:1608

    Article  Google Scholar 

  52. Viitanen MI, Vasala A, Neubauer P, Alatossava T (2003) Microbial Cell Factories 2:2

    Google Scholar 

  53. Adam AC, Rubio-Texeira M, Polaina J (2004) Crit Rev Food Sci Nutr 44:553

    CAS  Google Scholar 

  54. Romantschuk H, Lehtomaki M (1978) Process Biochem 29:16

    Google Scholar 

  55. Franke W (1992) Nutzpflanzenkunde, 5th edn. Georg Thieme, Stuttgart

    Google Scholar 

  56. El Bassam N (1998) Energy plant species. James & James, London

    Google Scholar 

  57. Mielke T (2005) Raps 23:79

    Google Scholar 

  58. Lang S, Trowitzsch-Kienast W (2002) Biotenside. Teubner, Weisbaden, p 35

    Google Scholar 

  59. Cooper DG, Paddock DA (1984) Appl Envir Microbiol 47:173

    CAS  Google Scholar 

  60. Madison LL, Huisman GW (1999) Microbiol Mol Biol Rev 63:21

    CAS  Google Scholar 

  61. Doi Y, Steinbüchel A (2002) Polyesters I. Biological systems and biotechnological production. In: Steinbüchel A (ed) Biopolymers. vol 3a. Wiley, Weinheim

    Google Scholar 

  62. Minoda Y (1986) Ind Microbiol 24:41

    Google Scholar 

  63. Desai JD, Banat IM (1997) Microbiol Mol Biol Rev 61:47

    CAS  Google Scholar 

  64. Lang S, Fischer L (1999) Microbial and enzymatic production of biosurfactants. In: Karsa DR (ed) Annual surfactants review. Sheffield Academic, Sheffield, p 51

    Google Scholar 

  65. Rau U, Hammen S, Heckmann R, Wray V, Lang S (2001) Ind Crops Products 13:85

    CAS  Google Scholar 

  66. Rau U, Manzke C, Wagner F (1996) Biotechnol Lett 18:149

    CAS  Google Scholar 

  67. Lang S, Rau U, Rasch D, Spöckner S, Vollbrecht E (1998) Mikrobielle Gewinnung von oberflächenaktiven Glykolipiden auf der Basis pflanzlicher Öle und Kohlenhydrate. In: Fachagentur Nachwachsende Rohstoffe e.V. (ed) Biokonversion nachwachsender Rohstoffe. Landwirtschaftsverlag, Münster, p 154

    Google Scholar 

  68. Aurich A, Forster A, Mauersberger S, Barth G, Stottmeister U (2002) Citric acid production from renewable resources by Yarrowia lipolytica. In: Proceedings third Yarrowia lipolytica international meeting; Cell biology and biotechnology of a nonconventional yeast, 17–20 July 2002, Dresden, Germany, p 124

    Google Scholar 

  69. Elimer E (1998) Food Technol Biotechnol 36:189

    CAS  Google Scholar 

  70. Rymowicz W, Lenart D (2004) Electron J Polish Agricultural Universities, Biotechnology, vol 7, issue 2

    Google Scholar 

  71. Adham NZ (2002) Bioresour Technol 84:97

    CAS  Google Scholar 

  72. Vandar-Sukan F (1988) J Chem Technol Biotechnol 43:39

    Article  Google Scholar 

  73. Biermann U, Friedt W, Lang S, Lühs W, Machmüller G, Metzger JO, Rüsch M, Schäfer HJ, Schneider MP (2000) Angew Chem 112:2292

    Google Scholar 

  74. Yi ZH, Rehm HJ (1988) Appl Microbiol Biotechnol 30:327

    Google Scholar 

  75. Fabritius D (1996) PhD thesis, University of Münster

    Google Scholar 

  76. Widmer A, Müller A (2003) Chem Rundschau 56:4

    Google Scholar 

  77. Oleoline (2004) www.oleoline.com

    Google Scholar 

  78. Haywood GW, Anderson AJ, Ewing DF, Dawes EA (1990) Appl Envir Microbiol 56:3354

    CAS  Google Scholar 

  79. Lillo JG, Rodriguez-Valera F (1990) Appl Envir Microbiol 56:2517

    Google Scholar 

  80. Taidi B, Anderson AJ, Dawes EA, Byrom D (1994) Appl Microbiol Biotechnol 40:786

    CAS  Google Scholar 

  81. Ashby RD, Solaiman DKY, Foglia TA (2004) J Polym Environ 12:105

    CAS  Google Scholar 

  82. Reimann A (1997) Produktion von 1,3-Propandiol aus Glycerin durch Clostridium butyricum DSM 5431 und produkttolerante Mutanten. PhD thesis, Technical University of Braunschweig

    Google Scholar 

  83. Wittlich P (2001) Biotechnische Herstellung von 1,3-Propandiol aus Glycerin mit immobilisierten Zellen von Clostridium butyricum NRRL B-1024 und thermophilen Mikroorganismen. PhD thesis, Technical University of Braunschweig

    Google Scholar 

  84. Wittlich P, Themann A, Vorlop KD (2001) Biotechnol Lett 23:463

    CAS  Google Scholar 

  85. Papanikolaou S, Fick1 M, Aggelis G (2004) J Chem Technol Biotechnol 79:1189

    CAS  Google Scholar 

  86. Biebl H, Zeng AP, Menzel K (1998) Appl Microbiol Biotechnol 50:24

    CAS  Google Scholar 

  87. Ulmer C, Deckwer WD, Zeng AP (2002) Chemie Ingenieur Technik 74:674

    CAS  Google Scholar 

  88. Vollenweider S, Lacroix C (2004) Appl Microbiol Biotechnol 64:16

    CAS  Google Scholar 

  89. Diehl B, Drauz K, Karau A, May O (2005) Biotechnologie. In: Dittmeyer R, Keim W, Kreysa G, Oberholz A (eds) Winnacker-Küchler: Chemische Technik, Prozesse und Produkte. vol 2, 5th edn. Wiley, Weinheim, p 662

    Google Scholar 

  90. Israelidis CJ (1988) Nutrition – single cell protein twenty years later. In: Vlavianos-Arvanitis A (ed) Proceedings from the first BIO international conference, Athens, Greece, 6–10 May 1987, Biopolitics International Organisation

    Google Scholar 

  91. http://www.norferm.no

    Google Scholar 

  92. Hanson RS, Flickinger MC, Schendel FJ, Guettler MV (2001) Production of amino acids using auxotrophic mutants of methylotrophic Bacillus. US Patent 6 261 825

    Google Scholar 

  93. Flickinger MC (2004) Brief overview of the conversion of methanol to amino acids by Bacillus methanolicus at 50 °C. Society for Industrial Microbiology Annual Meeting, Anaheim, 25–29 July 2004

    Google Scholar 

  94. Bourque PY, Pomerleau Y, Groleau D (1995) Appl Microbiol Biotechnol 44:367

    CAS  Google Scholar 

  95. Kang CK, Hyun SL, Jung HK (1993) Biotechnol Lett 15:1017

    CAS  Google Scholar 

  96. Helm J (2001) Methanotrophe Bakterien als Produzenten von Poly-(β-hydroxybuttersäure) (PHB) – Charakterisierung des Prozesses, des Polymers und einer stabilen Mischkultur. PhD thesis, Technical University of Dresden

    Google Scholar 

  97. Wendlandt KD, Jechorek M, Helm J, Stottmeister U (2001) J Ind Microbiol 17:185

    Google Scholar 

  98. Meiß KM, Eisenberg W, Gustrau-Wissing M (2002) Implementationsstudie zur biotechnologischen Produktion von Biopolymeren unter Einsatz digitaler Modelle auf der Basis nachwachsender Stoffe und organischer Abfälle. Arnold-Sommerfeld-Gesellschaft e.V., Study for the German Federal Environmental Agency (UBA), project number: UFOPLAN 20066302

    Google Scholar 

  99. Ratledge C (1977) Fermentation substrates. In: Perlman D (ed) Annual reports on fermentation processes. vol 1. Academic, New York

    Google Scholar 

  100. Kragl U (2005) Mikrobiologische Herstellung chemischer Grundstoffe. In: Dittmeyer R, Keim W, Kreysa G, Oberholz A (eds) Winnacker-Küchler: Chemische Technik, Prozesse und Produkte. vol 5, 5th edn. Wiley, Weinheim, p 1377

    Google Scholar 

  101. Shiio I (1971) Agri Biol Chem 35:2033

    CAS  Google Scholar 

  102. Lieth H, Whittaker RH (eds) (1975) Primary productivity of the biosphere. Ecological studies 14. Springer, Berlin Heidelberg New York

    Google Scholar 

  103. Klass DL (1994) Fuels from biomass. In: Kirk-Othmer encyclopedia of chemical technology. vol 12, 4th edn. Wiley, Weinheim, p 19

    Google Scholar 

  104. Hall DO, Rao KK (1999) Photosynthesis, 6th edn. Studies in biology. Cambridge University Press

    Google Scholar 

  105. Okkerse H, Van Bekkum H (1999) Green Chem 2:107

    Google Scholar 

  106. Vandamme E, Bienfait CG, Soetaert W (2004) Industrial biotechnology and sustainable chemistry. Royal Belgian Academy Council of Applied Science, Brussels

    Google Scholar 

  107. Gessa C, Trifiro F (2003) The green revolution for chemistry. International South Europe Symposium on non-food crops: from agriculture to industry, Bologna, 15–16 May 2003

    Google Scholar 

  108. Spelman, CA (1994) Non-food uses of agricultural raw materials, CAB International, Wallingford, UK published values in British pounds are converted to Euros using 100 ₤ = 146 €

    Google Scholar 

  109. Wilke D (1994) Raw materials for fermentation. In: Van Bekkum H, Röper H, Voragen AGJ (eds) Carbohydrates as organic raw materials III. Wiley, Weinheim, p 115

    Google Scholar 

  110. Lichtenthaler FW (2004) Carbohydrates as biofeedstocks for the chemical industry. In: Tundo P (ed) Green chemistry series, no. 1, 3rd edn. Interuniversitario Nazionale Chimica Ambiente (INCA), Venezia, p 105

    Google Scholar 

  111. Demain AL, Kennel YM, Aharonowitz Y (1979) Carbon catabolite regulation of secondary metabolism. In: Bull AT, Ellwood DC, Ratledge E (eds) Microbial technology: current state, future prospects. Cambridge University Press, Cambridge, p 175

    Google Scholar 

  112. European Commission, Agriculture Directorate-General (2005) The European sugar sector – Its importance and its future. http://europa.eu.int/comm/agriculture/capreform/sugar/infopack_en.pdf

  113. European Commission, http://europa.eu.int/comm/agriculture/capreform/sugar/index_en.htm

  114. European Commission, Agriculture Directorate-General (2004) The common market organisation of the market in sugar. http://europa.eu.int/comm/agriculture/markets/sugar/reports/descri_en.pdf

  115. Commission Regulation (EC) No 1265/2001, OJ L 178, p 63

    Google Scholar 

  116. Industrial Bioproducts: Today and tomorrow (2003), Energetics Inc. for the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Office of the Biomass Program, July, Washington DC

    Google Scholar 

  117. Maranesi GL, Baptista-Neto A, Hokka CO, Badino AC (2005) World J Microbiol Biotechnol 21:509

    CAS  Google Scholar 

  118. Gautam KK, Tyagi VK (2006) J Oleo Sci 55:155

    CAS  Google Scholar 

  119. Laufenberg G, Rosato P, Kunz B (2004) Eur J Lipid Sci Technol 106:207

    CAS  Google Scholar 

  120. Hee-Sik K, Jong-Woon J, Byung-Hyuk K, Chi-Yong A, Hee-Mock O, Byung-Dae Y (2006) Appl Microbiol Biotechnol 70:391

    Google Scholar 

  121. Wang ZX, Zhuge J, Fang H, Prior BA (2001) Biotechnol Adv 19:201

    CAS  Google Scholar 

  122. Ito T, Nakashimada Y, Senba K, Matsui T, Nishio N (2005) J Biosci Bioeng 100:260

    CAS  Google Scholar 

  123. Dharmadi Y, Murarka A, Gonzalez R (2006) Biotechnol Bioeng 94:821

    CAS  Google Scholar 

  124. González-Pajuelo M, Meynial-Salles I, Mendes F, Soucaille P, Vasconcelos I (2006) Appl Environ Microbiol 72:96

    Google Scholar 

  125. Lee PC, Lee WG, Lee SY, Chang HN (2001) Biotechnol Bioeng 72:41

    CAS  Google Scholar 

  126. Metzger JO, Bornscheuer U (2006) Appl Microbiol Biotechnol 71:13

    CAS  Google Scholar 

  127. Matthias R, Hermann S, Fritz W (2004) Chem Ing Tech 46:669

    Google Scholar 

  128. Humphrey AE (1967) Biotechnol Bioeng 9:3

    CAS  Google Scholar 

  129. Shennan JL, Levi JD (1974) Prog Ind Microbiol 13:1

    CAS  Google Scholar 

  130. Linton JD, Niekus HGD (1987) Antonie van Leeuwenhoek 53:55

    CAS  Google Scholar 

  131. Hartmansa S, de Bonta JAM, Harder W (1989) FEMS Microbiol Lett 63:235

    Google Scholar 

  132. Lindley ND (1995) Can J Bot 73(Suppl 1):S1034–S1042

    CAS  Google Scholar 

  133. Wolf K (ed) (1996) Nonconventional yeasts in biotechnology. Springer Verlag, Berlin

    Google Scholar 

  134. Fickers P, Benetti PH, Wache Y, Smitt MS, Nicaud JM (2005) FEMS Yeast Res 5:527

    CAS  Google Scholar 

  135. Shennan JL (2006) J Chem Technol Biotechnol 81:237

    CAS  Google Scholar 

  136. Tani Y (1985) Biotechnol Genet Eng Rev 3:111

    CAS  Google Scholar 

  137. Yezza A, Fournier D, Halasz A, Hawari J (2006) Appl Microbiol Biotechnol, Online Publition, June 3; DOI 10.1007/s00253-006-0458-7

    Google Scholar 

  138. Hanson RS, Hanson TE (1996) 60:439

    Google Scholar 

  139. Helm J, Wendlandt KD, Rogge G, Kappelmeyer U (2006) J Appl Microbiol 101:387

    CAS  Google Scholar 

  140. Wendlandt KD, Jechorek M, Stottmeister U, Münker T, Bäzold D, Kretschmer A, Menschel C, Panning F, Scharr S (2002) DE19721243 Method for the material- and energy-efficient use of biogas and installation for carrying out said method

    Google Scholar 

  141. Council Regulation (EC) No 318/2006, OJ L 58, p 1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Peters .

Editor information

Roland Ulber Dieter Sell

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peters, D. (2006). Raw Materials. In: Ulber, R., Sell, D. (eds) White Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_031

Download citation

Publish with us

Policies and ethics