Skip to main content

Precessional Switching of Thin Nanomagnets with Uniaxial Anisotropy

  • Chapter
  • First Online:
Spin Dynamics in Confined Magnetic Structures III

Part of the book series: Topics in Applied Physics ((TAP,volume 101))

Abstract

This review describes the evolution of the magnetization of uniaxial thin magnets when subjected to fast-rising magnetic-field pulses. We report detailed “all-electrical” experimental investigations of precessional switching on soft uniaxial micrometer-sized thin magnets, and we discuss them using a comprehensive, mostly analytical framework. General criteria are derived for the analytical assessment of the switching ability of any arbitrary set of experimental parameters. For this, we start from the Landau–Lifshitz equation and first consider the precessional switching in a much idealized macrospin, easy-plane loss-free system. We then test the main outputs of this model with time-resolved experiments on advanced Magnetic Random Access Memories (MRAM) cells. Using applied fields above the anisotropy field H k , we prove the quasiperiodic nature of the magnetization trajectory and we demonstrate experimental conditions ensuring a sub-200 ps ballistic magnetization reversal. We then upgrade our model accuracy by taking into account the uniaxial anisotropy and the behavior in hard-axis fields of the order of H k . We derive a simple though reliable estimate of the switching speed; its limiting factors highlight the experimental poor switching reproducibility when close to the minimal hard-axis reversal field H k /2. The latter field does not correspond to the minimal energy cost of the reversal, whose prospective evolution in the future generations of MRAM is predicted. Small departures from the macrospin state are discussed. The effect of damping is modeled using perturbation theory. Finite damping alters the precessional motion periodicity and puts some constraints on the field rise time. A special focus is dedicated to the relaxation-dominated precessional switching: the minimal hard-axis field triggering the switching is shown to be above H k /2 by an extra field cost linked to the damping constant times the square root of M S H k . Finally, the selective addressing and the direct-write of a magnetic cell with combined easy-axis and hard-axis fields are studied. We introduce the concept of bounce and revisit the dynamical astroid to derive the related characteristic reversal durations and their margins. We propose a field timing that is immune to the delay jitter between the combined addressing fields. We finish by investigating briefly the challenges and the promises of the “precessional” strategy for future MRAM generations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • C. H. Back, R. Allenspach, W. Weber, S. S. P. Parkin, D. Weller, E. L. Garwin, H. C. Siegmann: Minimal field strength in precessional magnetization reversal, Science 285, 864 (1999)

    Article  Google Scholar 

  • J. Miltat, G. Aburquerque, A. Thiaville: An introduction to micromagnetics in the dynamical regime, in B. Hillebrands, K. Ounadjela (Eds.): Spin Dynamics in Confined Magnetic Structures, vol. I (Springer, Berlin, Heidelberg 2001)

    Google Scholar 

  • J. Fassbender: Magnetization dynamics investigated by time-resolved Kerr effect magnetometry, in B. Hillebrands, K. Ounadjela (Eds.): Spin Dynamics in Confined Magnetic Structure, vol. II (Springer, Berlin, Heidelberg 2003)

    Google Scholar 

  • M. Bauer, J. Fassbender, B. Hillebrands, R. L. Stamps: Switching behaviour of a Stoner particle beyond the relaxation time limit, Phys. Rev. B 61, 3410 (200)

    Article  Google Scholar 

  • H. W. Schumacher, C. Chappert, R. C. Sousa, P. P. Freitas, J. Miltat: Quasiballistic magnetization reversal, Phys. Rev. Lett. 90, 017204 (2003)

    Article  ADS  Google Scholar 

  • H. W. Schumacher, C. Chappert, R. C. Sousa, P. P. Freitas, J. Miltat, J. Fassbender, B. Hillebrands: Phase coherent precessional magnetization reversal in microscopic spin valve elements, Phys. Rev. Lett. 90, 17201 (2003)

    Article  ADS  Google Scholar 

  • T. Rasing, H. van den Berg, T. Gerrits, J. Hohlfeld: Ultrafast magnetization and switching dynamics, in B. Hillebrands, K. Ounadjela (Eds.): Spin Dynamics in Confined Magnetic Structures, vol. II (Springer, Berlin, Heidelberg 2003)

    Google Scholar 

  • T. Gerrits, H. van Den Berg, J. Hohlfeld, L. Bär, T. Rasing: Ultrafast precessional magnetization reversal by picosecond magnetic field pulse shaping, Nature 418, 6897 (2002)

    Article  Google Scholar 

  • S. E. Russek, R. D. McMichael, M. J. Donahue: High speed switching and rotational dynamics in small magnetic thin film devices, in B. Hillebrands, K. Ounadjela (Eds.): Spin Dynamics in Confined Magnetic Structures, vol. II (Springer, Berlin, Heidelberg 2003)

    Google Scholar 

  • S. Kaka, S. E. Russek: Precessional switching of submicrometer spin-valves, Appl. Phys. Lett. 80, 2958 (2002)

    Article  ADS  Google Scholar 

  • T. Devolder, M. Belmeguenai, H. W. Schumacher, C. Chappert, Y. Suzuki: Precessional strategies for the ultrafast switching of soft and hard magnetic nanostructures, MRS Proc. 746, 189 (2003)

    Google Scholar 

  • T. Devolder, C. Chappert: Spectral analysis of the precessional switching of the magnetization in an isotropic thin film, Solid State Commun. 192, 97 (2004)

    Article  Google Scholar 

  • T. Devolder, C. Chappert: Precessional switching of thin nanomagnets: analytical study, Eur. Phys. J. B 36, 57 (2003)

    Article  ADS  Google Scholar 

  • T. Devolder, C. Chappert: Cell writing selection when using precessional switching in a magnetic random access memory, Appl. Phys. 95, 1933 (2004)

    Article  Google Scholar 

  • E. C. Stoner, E. P. Wohlfarth: A mechanism of magnetic hysteresis in heterogeneous alloys, Philos. Trans. R. Soc. London Ser. A 240, 599 (1948) reprinted in IEEE Trans. Magn. textbf27, 3475 (1991)

    Article  MATH  ADS  Google Scholar 

  • L. He, W. D. Doyle, H. Fujiwara: High speed coherent switching below the Stoner--Wohlfarth limit, IEEE Trans. Mag. 30, 4086 (1994)

    Article  ADS  Google Scholar 

  • L. He, W. D. Doyle: Theoretical description of magnetic switching experiments in picosecond pulses, Appl. Phys. 79, 6489 (1996)

    Article  Google Scholar 

  • E. L. L. Landau: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z Sowjetunion 8, 153 (1935)

    Google Scholar 

  • T. L. Gilbert: A lagrangian formulation of the gyromagnetic equation of the magnetization field, Phys. Rev. 100, 1243 (1955)

    Google Scholar 

  • W. K. Hiebert, L. Lagae, J. De Boeck: Spatially inhomogeneous ultrafast precessional magnetization reversal, Phys. Rev. B 68, 020402R (2003)

    Article  ADS  Google Scholar 

  • L. Lagae: IMEC Belgium, private communication

    Google Scholar 

  • T. Devolder, C. Maufront, J.-V. Kim, H. W. Schumacher, C. Chappert, R. Fournel: Bit selection scheme and dipolar interactions in high density precessionnal MRAMs, IEEE Sci. Meas. Tech. 152, 196--200 (2005)

    Article  Google Scholar 

  • C. Maunoury, T. Devolder, C. K. Lim, P. Crozat, C. Chappert, J. Wecker, L. Bär: Appl. Phys. 97, 74503 (2005)

    Article  Google Scholar 

  • C. Serpico, I. D. Mayergoyz, G. Bertotti: Analytical solutions of Landau--Lifshitz equation for precessional switching, Appl. Phys. 93, 6909 (2003)

    Article  Google Scholar 

  • C. Kittel: Introduction to Solid State Physics, 5 ed. (Wiley, New York 1976)

    MATH  Google Scholar 

  • H. W. Schumacher, C. Chappert, P. Crozat, R. C. Sousa, P. P. Freitas, M. Bauer: Coherent suppression of magnetic ringing in microscopic spin valve elements, Appl. Phys. Lett. 80, 3781 (2002)

    Article  ADS  Google Scholar 

  • G. M. B. Albuquerque: Magnetization precession in confined geometry: physical and numerical aspects, Ph.D. thesis, Université Paris Sud, Orsay (2002)

    Google Scholar 

  • Y. Acremann, C. H. Back, M. Buess, D. Pescia, V. Pobrovsky: Bifurcation in precessional switching, Appl. Phys. Lett. 79, 2228 (2001)

    Article  ADS  Google Scholar 

  • P. Bryant, H. Suhl: Thin-film magnetic patterns in an external field, Appl. Phys. Lett. 54, 2224 (1989)

    Article  ADS  Google Scholar 

  • C. Bayer, S. O. Demokritov, B. Hillebrands, A. N. Slavin: Spin-wave wells with multiple states created in small magnetic elements, Appl. Phys. Lett. 82, 607 (2003)

    Article  ADS  Google Scholar 

  • J. Miltat, M. Stiles: in B. Hillebrands, K. Ounadjela (Eds.): Spin Dynamics in Confined Magnetic Structures, vol. III (Springer, Berlin, Heidelberg 2004)

    Google Scholar 

  • A. A. Tulapurkar, T. Devolder, K. Yagami, P. Crozat, C. Chappert, A. Fukushima, Y. Suzuki: Appl. Phys. Lett. 85, 5358 (2004)

    Article  ADS  Google Scholar 

  • T. Devolder, C. Chappert, P. Crozat, A. Tulapurkar, Y. Suzuki, J. Miltat, K. Yagami: Appl. Phys. Lett. 86, 62505 (2005)

    Article  Google Scholar 

  • M. Durlam, P.-J. Naji, A. Omair, M. DeHerrera, J. Calder, J. M. Slaughter, B. N. Engel, N. D. Rizzo, G. Grynkewich, B. Butcher, C. Tracy, K. Smith, K. W. Kyler, J. J. Ren, J. A. Molla, W. A. Feil, R. G. Williams, S. Tehrani: IEEE J. Solid. State. Circ. 38, 769 (2003) announcement of 1Mbit prototype MRAM by Motorola

    Article  Google Scholar 

  • IBM-Infineon alliance: Announcement of 128-kbit prototype MRAM by the IBM-Infineon alliance at the Symposium on VLSI Technology, Kyoto (2003)

    Google Scholar 

  • Y. Nozaki, K. Matsuyama: Size dependence of switching current and energy barrier in the magnetization reversal of rectangular magnetic random access memory cell, Appl. Phys. 93, 7295 (2003)

    Article  Google Scholar 

  • R. P. Cowburn: Superparamagnetism and the future of magnetic random access memory, Appl. Phys. 93, 9310 (2003)

    Article  Google Scholar 

  • J.-V. Kim, T. Devolder, C. Chappert, C. Maufront, R. Fournel: Appl. Phys. Lett. 85, 4094 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Burkard Hillebrands André Thiaville

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Devolder, T., Schumacher, H.W., Chappert, C. Precessional Switching of Thin Nanomagnets with Uniaxial Anisotropy. In: Hillebrands, B., Thiaville, A. (eds) Spin Dynamics in Confined Magnetic Structures III. Topics in Applied Physics, vol 101. Springer, Berlin, Heidelberg . https://doi.org/10.1007/10938171_1

Download citation

Publish with us

Policies and ethics