Skip to main content

Prebiotic Chemistry: Laboratory Experiments and Planetary Observation

  • Chapter
  • First Online:
Lectures in Astrobiology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baross J.A., Hoffman, S.E. (1985). Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Origins Life 15, 327–345.

    Google Scholar 

  • Bénilan Y., Smith N.R., Jolly A., Raulin F. (2000). The long wavelength range temperature variations of the mid-UV acetylene absorption coefficient, Planet. Space Sci., 48, 463–471.

    Google Scholar 

  • Brack A. ed. (1998). The Molecular Origins of Life: Assembling Parts of the Puzzle, Cambridge University Press, Cambridge.

    Google Scholar 

  • Briggs M.H. (1961). Organic constituents of meteorites. Nature, 191(4794), 1137–1140.

    Google Scholar 

  • Canuto V.M., Levine J.S., Augustsson T.R., Imhoff C.L., Giampapa M.S. (1983). The young sun and the atmosphere and photochemistry of the early Earth, Nature, 305, 281–286.

    Google Scholar 

  • Clarke D.W., Ferris J.P. (1997). Chemical evolution on Titan: comparisons to the prebiotic Earth, Origins of Life and Evol. Biosphere, 27 225–248.

    Google Scholar 

  • Coll P., Coscia D., Gazeau M.-C., de Vanssay E., Guillemin J.-C., Raulin F. (1995). Organic chemistry in Titan's atmosphere: new data from laboratory simulations at low temperature, Adv. Space Res., 16 (2), 93–104.

    Google Scholar 

  • Coll P., Coscia D., Gazeau M.-C., Raulin F. (1997). New planetary atmosphere simulations: application to the organic aerosols of Titan, Adv. Space Res., 19 (7), 1113–1119.

    Google Scholar 

  • Coll P., Coscia D., Gazeau M.-C., Raulin F. (1998). Review and latest results of laboratory investigation of Titan's aerosols, Origins of Life and Evol. Biosph., 28, 195–213.

    Google Scholar 

  • Coll P., Coscia D., Smith N.R., Gazeau M.-C., Ramirez S.I., Cernogora G., Israel G., Raulin F. (1999a). Experimental laboratory simulation of Titan's atmosphere: aerosols and gas phase, Planet. Space Sci., 47 (10,11), 1331–1340.

    Google Scholar 

  • Coll P., Guillemin J.-C., Gazeau M.-C., Raulin F. (1999b). Report and implications of the first observation of C4N_2 in laboratory simulations of Titan's atmosphere, Planet. Space Sci., 47 (12), 1433–1440.

    Google Scholar 

  • Coll P., Bernard J.-M., Navarro-González R., Raulin F. (2003). Oxirane: An exotic oxygenated organic compound in Titan? Astrophys. J., 589, 700–703.

    Google Scholar 

  • Coustenis A., Salama A., Lellouch E., Encrenaz Th., Bjoraker G.L., Samuelson R.E, De Graauw Th., Feuchtgruber H., Kessler M.F. (1998). Evidence for water vapor in Titan' s atmosphere from ISO/SWS data, Astron. Astrophys., 336, L85–L89.

    Google Scholar 

  • Coustenis A., Salama A., Schulz B., Ott S., Lellouch E., Encrenaz Th., Gautier D., Feuchtgruber H. (2003). Titan's atmosphere from ISO mid-infrared spectroscopy, Icarus, 161, 383–403.

    Google Scholar 

  • De Vanssay E., Gazeau M.-C., Guillemin J.-C., Raulin F. (1995). Experimental simulation of Titan's organic chemistry at low temperature, Planetary Space Sci., 43, 25–31.

    Google Scholar 

  • Dobrijevic M., Parisot J.-P. (1998). Effect of chemical kinetics uncertainties on hydrocarbon production in the stratosphere of Neptune, Planet. Space Sci., 46 (5), 491–505.

    Google Scholar 

  • Ehrenfreund P., Boon J.P., Commander J., Sagan C., Thompson W.R., Khare B.N. (1995). Analytical pyrolysis experiments of Titan aerosol analogues in preparation for the Cassini–Huygens mission, Adv. Space Res., 15 (3), 335–342.

    Google Scholar 

  • Ferris J.P. (1979). HCN did not condense to give heteropolypeptides on the primitive earth, Science, 203, 1135.

    Google Scholar 

  • Ferris J.P., Hagan W.J. (1984). HCN and chemical evolution: the possible role of cyano compounds in prebiotic synthesis, Tetrahedron, 40 (7), 1093–1120.

    Google Scholar 

  • Ferris J.P., Sanchez R.A., Orgel L.E. (1968). Studies in prebiotic synthesis III Synthesis of pyrimidine from cyanoacetaldehyde, J. Mol. Evol., 3, 301–309.

    Google Scholar 

  • Ferris J.P., Zameck O.S., Altbuch A.M., Freiman H. (1974). Chemical evolution XVIII Synthesis of pyrimidines from guanidine and cyanoacetylene and cyanate, J Mol. Biol., 33, 693–704.

    Google Scholar 

  • Gautier D., Raulin F. (1997). Chemical Composition of Titan's atmosphere, Special ESA Publication, SP 1177, 359–364.

    Google Scholar 

  • Haldane J.B.S. (1929). The Origin of Life, The Rationalist Annual, 148, 3–11.

    Google Scholar 

  • Hattori Y., Kinjo M., Ishigami M., Nagano K. (1984). Formation of amino-acids from CH4-rich or CO2-rich model atmosphere, Origins of Life, 14 (1–4), 145–150.

    Google Scholar 

  • Hennet R.J.-C., Holm N.G., Engel M.H. (1992). Abiotic synthesis of amino acids under hydrothermal conditions and the origin of life: a perpetual phenomenon? Naturwissenschaften, 79, 361–365.

    Google Scholar 

  • Holm N.G., Guest Editor (1992). Marine hydrothermal systems and the origin of life, Origins of Life and Evol. Biosph., 22 (1–4), 1–191.

    Google Scholar 

  • Holm N.G., Andersson E.M. (1998). Hydrothermal systems, in The Molecular Origins of Life: Assembling Pieces of the Puzzle, ed. A. Brack, p. 86–99, Cambridge University Press, Cambridge.

    Google Scholar 

  • Imai E-I., Honda H., Hatori K., Brack A., Matsuno K. (1999). Elongation of oligopeptides in a simulated submarine hydrothermal system. Science, 283, 831–833.

    Google Scholar 

  • Kasting J.F., Pollack J.B., Crisp D. (1984). Effects of high CO2 levels on surface temperature and atmospheric oxidation state of the early Earth, J. Atmosph. Chem., 1, 403–428; and refs therein.

    Google Scholar 

  • Khare, B.N., Sagan C., Zumberge J.E., Sklarew D.S., Nagy B. (1981). Organic solids produced by electrical discharges in reducing atmospheres: tholin molecular analysis, Icarus, 48, 290–297.

    Google Scholar 

  • Khare, B.N., Sagan C., Arakawa E.T., Suits F., Callicott T.A., Williams M.W. (1984). Optical constant of organic tholins produced in a simulated Titanian atmosphere: from software X-rays to microwave frequencies, Icarus, 60, 127–137.

    Google Scholar 

  • Khare, B.N., Sagan C., Ogino H., Nagy B., Er C., Schram K.H., Arakawa E.T. (1986). Amino acids derived from Titan tholins, Icarus, 68, 176–184.

    Google Scholar 

  • Kobayashi K., Oshima T., Yanagawa H. (1989). Abiotic synthesis of amino acids by proton irradiation of a mixture of carbon monoxide, nitrogen and water, Chem. Letters, 1989 (9), 1527–1535.

    Google Scholar 

  • Lara L.M., Lellouch E., Lopez-Moreno J.J., Rodrigo R. (1996). Vertical distribution of Titan's atmospheric neutral constituents J. Geophys. Res., 101 (E10), 23261–23283.

    Google Scholar 

  • Lebreton J.P., European Space Agency (1997). Huygens: Science, Payload and Mission, ESA SP-1177.

    Google Scholar 

  • Lebreton J.-P., Matson D.L. (2002). The Huygens probe: science, payload and mission overview, Space Science Rev., 104 (1–4), 59–100.

    Google Scholar 

  • Lellouch E., Romani P.N., Rosenqvist J. (1994). The vertical distribution and origin of HCN in Neptune's atmosphere, Icarus, 108, 112–136.

    Google Scholar 

  • Marshall W.L. (1994). Hydrothermal synthesis of amino acids, Geochim. Cosmochim. Acta, 58 (9), 2099–2106.

    Google Scholar 

  • Marten A., Gautier D., Owen T., Sanders D.B., Matthews H.E., Owen T.C., Atreya S.K., Tilanus R.P.J., Deane J.R. (1993). First observation of CO and HCN on Neptune and Uranus at millimeter wavelength and their implications for atmospheric chemistry, Astrophys. J., 406, 285–297.

    Google Scholar 

  • Matson D.L., Spilker L.J., Lebreton J.-P. (2002). The Cassini/Huygens mission to the Saturnian system, Space Science Rev., 104 (1–4), 1–58.

    Google Scholar 

  • Matthews C.N. (1979). Reply to Ferris J.P. (1979), Science, 203 1136.

    Google Scholar 

  • Matthews C.N., Moser R.E. (1967). Peptide synthesis from hydrogen cyanide and water, Nature, 215, 1230–1234.

    Google Scholar 

  • McDonald G.D., Thompson W.R., Heinrich M., Khare B.N., Sagan C. (1994). Chemical investigation of Titan and Triton tholins, Icarus, 108, 137–145.

    Google Scholar 

  • McKay C.P. (1996). Elemental composition, solubility, and optical properties of Titan's organic haze, Planet. Space Sci., 44 (8), 741–747.

    Google Scholar 

  • Miller S.L. (1953). A production of amino-acids under possible primitive earth conditions, Science, 117, 528–529.

    Google Scholar 

  • Miller S.L., Orgel L. (1974). The Origins of Life on the Earth, Prentice Hall, N. Jersey.

    Google Scholar 

  • Miller S.L., Schlesinger G. (1984). Carbon and energy yields in prebiotic syntheses using atmospheres containing CH4, CO and CO2, Origins of Life, 14 (1–4), 83–90, and refs. included.

    Google Scholar 

  • Mordaunt D.H., Lambert I.R., Morley G.P., Ashfold M.N.R., Dixon R.N., Western C.M., Schnieder L., Welge K.H. (1993), Primary product channels in the photodissociation of methane at 121.6 nm, J. Chem. Phys., 98 (3), 2054–2065.

    Google Scholar 

  • Navarro-González R., Molina M.J., Molina L.T. (1998). Nitrogen Fixation by Volcanic Lightning in the Early Earth. Geophys. Res. Lett., 25, 3123–3126.

    Google Scholar 

  • Navarro-González R., McKay C.P., Nna Mvondo D. (2001). A possible nitrogen crisis for archaean life due to reduced nitrogen fixation by lightning, Nature 412, 61–64.

    Google Scholar 

  • Oparin, A.I. (1924). Proiskhozhdenie Zhizni, Izd. Moskovshii. Rabochii, Moscow.

    Google Scholar 

  • Oro J. (1961). Comets and the formation of biochemical compunds on the primitive earth. Nature 190, 389–390.

    Google Scholar 

  • Pinto J.P., Gladstone G.R., Yung Y.L. (1980). Photochemical production of formaldehyde in Earth's primitive atmosphere, Science, 210, 183–185.

    Google Scholar 

  • RamS.I., Coll P., Da Silva A., Navarro-González R., Lafait J., Raulin F. (2002). Complex Refractive index of Titan's aerosol analogues in the 200–900;nm domain, Icarus, 156 (2), 515–530.

    Google Scholar 

  • Raulin F. (1990). Prebiotic syntheses of biologically interesting monomers in aqueous solutions: facts and constraints, J. British Interplanet. Soc., 43, 39–45.

    Google Scholar 

  • Raulin F., Coll P., Bénilan Y., Coscia D., Gazeau M.-C., Khlifi M., Bruston P. (1998). Titan's atmosphere: new data of exobiological importance, in Planetary Systems: The Long View eds. L.M. Celnikier & J Trân Thanh Vân, p. 435–441, Editions Frontières, Gif/Yvette, France.

    Google Scholar 

  • Raulin F., Owen T. (2002). Organic chemistry and exobiology on Titan, Space Science Rev., 104 (1–4), 377–394.

    Google Scholar 

  • Raulin F., Toupance G. (1975). Etude cinétique de l'évolution du cyanoacétaldéhyde en solution aqueuse, Bull. Soc. Chim., 1975 (1–2), 188–195.

    Google Scholar 

  • Rosenqvist J., Lellouch E., Romani P.N., Paubert G., Encrenaz Th. (1992). Millimeter wave observations of Saturn, Uranus and Neptune: CO and HCN on Neptune, Astrophys. J., 392, L99–L102.

    Google Scholar 

  • Sagan C., Khare B.N. (1971). Long wavelength UV photoproduction of amino acids on the primitive earth, Science, 173, 417–420.

    Google Scholar 

  • Sagan C., Khare B.N. (1979). Tholins: Organic chemistry of interstellar grains and gas, Nature, 277, 102–107.

    Google Scholar 

  • Sagan C., Khare B.N., Lewis J. (1984). Organic matter in the solar system, in Saturn University of Arizona Press, Tucson., pp. 788–807.

    Google Scholar 

  • Shapiro R. (1988). Prebiotic ribose synthesis: a critical analysis, Origins Life Evol. Biosphere, 18, 71–85.

    Google Scholar 

  • Smith, N.R. (1999). Sensibilité des modèles théoriques de l'atmosphère de Titan aux incertitudes sur la photochimie des hydrocarbures simples, These de Doctorat, Université Paris 12.

    Google Scholar 

  • Smith N.R., Raulin F. (1999). Modeling of methane photolysis in the reducing atmospheres of the outer solar system, J. Geophys. Res., 104 (E1), 1873–1877.

    Google Scholar 

  • Stocker C., Boston P.J., Mancinelli R.L., Segal W.D., Khare B.N., Sagan C. (1990). Microbial metabolism of Tholins, Icarus, 85, 241–256.

    Google Scholar 

  • Thompson W., Todd H., Schwartz J., Khare B.N., Sagan C. (1991). Plasma discharge in N2 + CH4 at low pressures: experimental results and applications to Titan, Icarus, 90, 57–73.

    Google Scholar 

  • Toublanc D., Parisot J.-P., Brillet J., Gautier D., Raulin F., McKay C.P. (1995). Photochemical modeling of Titan's atmosphere, Icarus, 13, 2–26.

    Google Scholar 

  • Toupance G., Sebban G., Buvet R. (1970). Etape initiale de la polymérisation de l'acide cyanhydrique et synthèses prébiologiques, J. Chim. Phys., 67 (10), 1870–1874.

    Google Scholar 

  • Wachtersh"auser G. (1990). The case for the chemoautotrophic origin of life in an iron-sulfur world. Origins Life Evol. Biosphere 20, 173–176.

    Google Scholar 

  • Yung Y.L., Allen M., Pinto J.P. (1984). Photochemistry of the atmosphere of Titan: comparison between model and observations, Astrophys. J. Suppl. Ser., 55, 465–506.

    Google Scholar 

  • Yung Y.L., DeMore W.B. (1999). Photochemistry of Planetary Atmospheres, Oxford Univ. Press, Oxford.

    Google Scholar 

  • Zubay G. (2000). Origins of Life on the Earth and in the Cosmos, Academic Press, San Diego.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Muriel Gargaud Bernard Barbier Hervé Martin Jacques Reisse

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raulin, F., Coll, P., Navarro-González, R. (2005). Prebiotic Chemistry: Laboratory Experiments and Planetary Observation. In: Gargaud, M., Barbier, B., Martin, H., Reisse, J. (eds) Lectures in Astrobiology. Advances in Astrobiology and Biogeophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10913406_13

Download citation

Publish with us

Policies and ethics