Advertisement

VIII Some functional relations specially applicable to the molecular constants of CO2

0 Introduction
  • G. Guelachvili
  • K. Narahari Rao
Chapter
Part of the Landolt-Börnstein - Group II Molecules and Radicals book series

Abstract

Summary

This document is part of Subvolume B6 ‘Linear Triatomic Molecules - CCH’ of Volume 20 ‘Molecular Constants Mostly from Infrared Spectroscopy’ of Landolt-Börnstein - Group II Molecules and Radicals.

Keywords

Molecular Constants Mostly from Infrared Spectroscopy Linear Triatomic Molecules - CCH 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 86Hus.
    Husson, N., Chédin, A., Scott, N.A., Bailly, D., Graner, G., Lacome, N., Levy, A., Rossetti, C., Tarrago, G., Camy-Peyret, C., Flaud, J.-M., Bauer, A., Colmont, J.M., Monnanteuil, N., Hilico, J.C., Pierre, G., Loete, M., Champion, J.P., Rothman, L.S., Brown, L.R., Orton, G., Varanasi, P., Rinsland, C.P., Smith, M.A.H., Goldman, A.: The GEISA spectroscopic line parameters data bank in 1984. Ann. Geophys. Ser. A 4 (1986) 185 – 190.ADSGoogle Scholar
  2. 87Rot.
    Rothman, L.S., Gamache, R.R., Goldman, A., Brown, L.R., Toth, R.A., Pickett, H.M., Poynter, R.L., Flaud, J.-M., Camy-Peyret, C., Barbe, A., Husson, N., Rinsland, C.P., Smith, M.A.H.: The HITRAN database: 1986 edition. Appl. Opt. 26 (1987) 4058 – 4097.ADSCrossRefGoogle Scholar
  3. 79Ché.
    Chédin, A.: The carbon dioxide molecule: potential, spectroscopic, and molecular constants from its infrared spectrum. J. Mol. Spectrosc. 76 (1979) 430 – 491.ADSCrossRefGoogle Scholar
  4. 92Tef.
    Teffo, J.L., Sulakshina, O.N., Perevalov, V.I.: Effective Hamiltonian for rovibrational energies and line intensities of carbon dioxide. J. Mol. Spectrosc. 156 (1992) 48 – 64.CrossRefADSGoogle Scholar
  5. 45Her.
    Herzberg G.: Infrared and Raman spectra of polyatomic molecules. New York: Van Nostrand, 1945.Google Scholar
  6. 68Suz.
    Suzuki, I.: General anharmonic force constants of carbon dioxide. J. Mol. Spectrosc. 25 (1968) 479 – 500.CrossRefADSGoogle Scholar
  7. 88Ros2.
    Rosenmann, L., Hartmann, J.M., Perrin, M.Y., Taine, J.: Collisional broadening of CO2 IR lines. II. Calculations. J. Chem. Phys. 88 (1988) 2999 – 3006.ADSCrossRefGoogle Scholar
  8. 89Sta.
    Starovoitov, V.S., Trushin, S.A., Churakov, V.V., Pivovarchik, V.-F.: Dipole moments of laser transitions of isotopic carbon dioxide. Experiment and theory. J. Quant. Spectrosc. Radiat. Transfer 41 (1989) 153 – 160.CrossRefADSGoogle Scholar
  9. 94Scu.
    Scutaru, D., Rosenmann, L., Taine, J.: Approximate intensities of CO2 hot bands at 2.7, 4.3 and 12 µm for high temperature and medium resolution applications. J. Quant. Spectrosc. Radiat. Transfer 52 (1994) 765 – 781.CrossRefADSGoogle Scholar
  10. 87Gen.
    Gentry, B., Strow, L.L.: Line mixing in a N2-broadened CO2 Q-branch observed with a tunable diode laser. J. Chem. Phys. 86 (1987) 5722 – 5730.CrossRefADSGoogle Scholar
  11. 92Lév.
    Lévy, A., Lacome, N., Chackerian jr., C.: Collisional line mixing. In: Spectroscopy of the Earth's atmosphere and the interstellar medium, Rao, K. Narahari, Weber, A. (eds.), San Diego: Academic Press, Inc., 1992, p. 261 – 330.Google Scholar
  12. 92Mar.
    Margottin-Maclou, M., Henry, A., Valentin, A.: Line mixing in the Q-branches of the ν 1 + ν 2 band of nitrous oxide and of the (1110)I ← 0220 band of carbon dioxide. J. Chem. Phys. 96 (1992) 1715 – 1723.CrossRefADSGoogle Scholar
  13. 95Lav.
    Lavorel, B., Fanjoux, G., Millot, G.: Line coupling effects in anisotropic Raman Q-branches of the ν 1/2ν 2 Fermi dyad in CO2. J. Chem. Phys. 103 (1995) 9903 – 9906.CrossRefADSGoogle Scholar
  14. 79Rob.
    Robert, D., Bonamy, J.: Short range force effects in semiclassical molecular line broadening calculations. J. Phys. (Paris) 40 (1979) 923 – 933.Google Scholar
  15. 91Bro.
    Brodbeck, C., Thanh, N.V., Bouanich, J.-P., Boulet, C., Jean-Louis, A., Bezard, B., De Bergh, C.: Measurements of pure CO2 absorption at high densities near 2.3 µm. J. Geophys. Res. Planets 96(E2) (1991) 17 497 – 17 500.ADSGoogle Scholar
  16. 89Tho.
    Thomas, M.E., Linevsky, M.J.: Integrated intensities of N2, CO2, and SF6 vibrational bands from 1800 to 5000 cm−1 as a function of density and temperature. J. Quant. Spectrosc. Radiat. Transfer 42 (1989) 465 – 476.CrossRefADSGoogle Scholar
  17. 87Ari.
    Arié, E., Lacome, N., Lévy, A.: Measurement of CO2 line broadening in the 10.4 µm laser transition at low temperatures. Appl. Opt. 26 (1987) 1636 – 1640.ADSCrossRefGoogle Scholar
  18. 89Var.
    Varanasi, P., Chudamani, S.: Intensity measurements in the 720.8 cm−1 Q-branch of 12C16O2. J. Geophys. Res. 94 (1989) 13069 – 13072.ADSCrossRefGoogle Scholar
  19. 94Str.
    Strow, L.L., Tobin, D.C., Hannon, S.E.: A compilation of first order line mixing coefficients for CO2 Q-branches. J. Quant. Spectrosc. Radiat. Transfer 52 (1994) 281 – 294.ADSCrossRefGoogle Scholar
  20. 87Men.
    Menoux, V., Le Doucen, R., Boulet, C.: Line shape in the low frequency wing of self-broadened CO2 lines. Appl. Opt. 26 (1987) 554 – 562.ADSCrossRefGoogle Scholar
  21. 75Ros.
    Rosenkranz, P.W.: Shape of the 5 mm oxygen band in the atmosphere. IEEE Trans. Antennas Prop. AP-23 (1975) 498.CrossRefADSGoogle Scholar
  22. 95Har.
    Hartmann, J.-M., Boulet, C., Margottin-Maclou, M., Rachet, F., Khalil, B., Thibault, F., Boissoles, J.: Simple modelling of Q-branch absorption. I. Theoretical model and application to CO2 and N2O. J. Quant. Spectrosc. Radiat. Transfer 54 (1995) 705 – 722.ADSCrossRefGoogle Scholar
  23. 85Iol.
    Ioli, N., Panchenko, V., Pellegrino, M., Strumia, F.: Amplification and saturation in a CO2 waveguide amplifier. Appl. Phys. B 38 (1985) 23 – 30.CrossRefADSGoogle Scholar
  24. 83Gou.
    Gough, T.E., Orr, B.J., Scoles, G.: Laser Stark spectroscopy of carbon dioxide in a molecular beam. J. Mol. Spectrosc. 99 (1983) 143 – 158.CrossRefADSGoogle Scholar
  25. 94Tef.
    Teffo, J.-L., Perevalov, V.I., Lyulin, O.M.: Reduced effective Hamiltonian for a global treatment of rovibrational energy levels of nitrous oxide. J. Mol. Spectrosc. 168 (1994) 390 – 403.CrossRefADSGoogle Scholar

Authors and Affiliations

  • G. Guelachvili
  • K. Narahari Rao

There are no affiliations available

Personalised recommendations