VI Intensities

0 Introduction
  • G. Guelachvili
  • K. Narahari Rao
Part of the Landolt-Börnstein - Group II Molecules and Radicals book series



This document is part of Subvolume B6 ‘Linear Triatomic Molecules - CCH’ of Volume 20 ‘Molecular Constants Mostly from Infrared Spectroscopy’ of Landolt-Börnstein - Group II Molecules and Radicals.


Molecular Constants Mostly from Infrared Spectroscopy Linear Triatomic Molecules - CCH 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 59Pen.
    Penner, S.S.: Quantitative molecular spectroscopy and gas emissivities. Reading, Massachusetts: Addison Wesley, 1959.Google Scholar
  2. 76Pug.
    Pugh, L.A., Rao, K. Narahari: Intensities from infrared spectra. Molecular spectroscopy: Modern research, Vol. II, Rao, K. Narahari (ed.), New York: Academic Press, 1976, p. 165 – 227.Google Scholar
  3. 79Kim.
    Kim, K., King, W.T.: Integrated intensities in hydrogen cyanide. J. Chem. Phys. 71 (1979) 1967 – 1972.ADSCrossRefGoogle Scholar
  4. 83Bot.
    Botschwina, P.: Infrared intensities of polyatomic molecules calculated from SCEP dipolemoment functions and anharmonic vibrational wavefunctions. I) Stretching vibration of the linear molecules HCN, HCP and C2N2. Chem. Phys. 81 (1983) 73 – 85.CrossRefADSGoogle Scholar
  5. 63Ove.
    Overend, J.: Quantitative intensity studies and dipole moment derivatives. Infrared spectroscopy and molecular structure, Davies, M.M. (ed.), Amsterdam: Elsevier, 1963, p. 345 – 376.Google Scholar
  6. 85Jor.
    Jorgensen, U.G., Almlof, J., Gustafsson, B., Larsson, M., Siegbahn, P.: CASSCF and CCI calculations of the vibrational band strengths of HCN. J. Chem. Phys. 83 (1985) 3034 – 3041.ADSCrossRefGoogle Scholar
  7. 82Lie.
    Lie, G.C., Peyerimhoff, S.D., Buenker, R.J.: Theoretical integrated intensities for the 2ν 2 and the 2ν 2ν 2 bands of HCN and DCN. J. Mol. Spectrosc. 93 (1982) 74 – 82.CrossRefADSGoogle Scholar
  8. 90Gam.
    Gamache, R.R., Hawkins, R.L., Rothman, L.S.: Total internal partition sums in the temperature range 70 – 3000 K: atmospheric linear molecules. J. Mol. Spectrosc. 142 (1990) 205 – 219.CrossRefADSGoogle Scholar
  9. 55Her.
    Herman, R., Wallis, R.F.: Influence of vibration-rotation interaction on line intensities in vibration rotation bands of diatomic molecules. J. Chem. Phys. 23 (1955) 637 – 646.CrossRefGoogle Scholar
  10. 87Wat.
    Watson, J.K.G.: Quadratic Herman-Wallis factors in the fundamental bands of linear molecules. J. Mol. Spectrosc. 125 (1987) 428 – 441.CrossRefADSGoogle Scholar
  11. 92Wat.
    Wattson, R.B., Rothman, L.S.: Direct numerical diagonalization: wave of the future. J. Quant. Spectrosc. Radiat. Transfer 48 (1992) 763 – 780.CrossRefADSGoogle Scholar
  12. 84Tot.
    Toth, R.A.: Line strengths of N2O in the 1120 – 1440 cm−1 region. Appl. Opt. 23 (1984) 1825 – 1834.ADSCrossRefGoogle Scholar
  13. 86Rin.
    Rinsland, C.P., Benner, D.C., Devi, V.M.: Absolute line intensities in CO2 bands near 4.8 µm. Appl. Opt. 25 (1986) 1204 – 1214.ADSCrossRefGoogle Scholar
  14. 85Smi.
    Smith, M.A.H., Rinsland, C.P., Fridovich, B., Rao, K. Narahari: Intensities and collision broadening parameters from infrared spectra. Molecular spectroscopy: Modern research, Vol. III, Rao, K. Narahari (ed.), Orlando: Academic Press, 1985, p. 111 – 248.Google Scholar
  15. 84Var.
    Varghese, P.L., Hanson, R K.: Tunable diode laser measurements of spectral parameters of HCN at room temperature. J. Quant. Spectrosc. Radiat. Transfer 31 (1984) 548 – 559.CrossRefADSGoogle Scholar
  16. 87Ari.
    Arié, E., Lacome, N., Lévy, A.: Measurement of CO2 line broadening in the 10.4 µm laser transition at low temperatures. Appl. Opt. 26 (1987) 1636 – 1640.ADSCrossRefGoogle Scholar
  17. 87Gen.
    Gentry, B., Strow, L.L.: Line mixing in a N2-broadened CO2 Q-branch observed with a tunable diode laser. J. Chem. Phys. 86 (1987) 5722 – 5730.CrossRefADSGoogle Scholar
  18. 88Ros1.
    Rosenmann, L., Hartmann, J.M., Perrin, M.Y., Taine, J.: Accurate calculated tabulations of IR and Raman CO2 line broadening by CO2, H2O, N2, O2 in the 300 – 2400 K temperature range. Appl. Opt. 27 (1988) 3902 – 3907.ADSCrossRefGoogle Scholar
  19. 81Kaw.
    Kawaguchi, K., Hirota, E., Yamada, C.: Diode laser spectroscopy of the BO2 radical. Vibronic interaction between the à 2Πu and \( \tilde X^2 \Pi _g \) states. Mol. Phys. 44 (1981) 508 – 528.ADSCrossRefGoogle Scholar
  20. 86Kaw3.
    Kawaguchi, K., Hirota, E.: Diode laser spectroscopy of BO2 radical: The κ2Σ ← 2Π3/2 transition of the ν 2 fundamental band. J. Mol. Spectrosc. 116 (1986) 450 – 457.CrossRefADSGoogle Scholar
  21. 88Mak1.
    Maki, A.G., Burkholder, J.B., Sinha, A., Howard, C.J.: Fourier transform infrared spectroscopy of the BO2 radical. J. Mol. Spectrosc. 130 (1988) 238 – 248.ADSCrossRefGoogle Scholar
  22. 85Hir.
    Hirota, E.: High resolution spectroscopy of transient molecules. Springer Series in Chemical Physics, Vol. 40, Lotsch, H.K.V. (ed.), Berlin, Heidelberg: Springer Verlag, 1985, p. 21.Google Scholar
  23. 61Joh.
    Johns, J.W.C.: The absorption spectrum of BO2. Can. J. Phys. 39 (1961) 1738 – 1768.ADSGoogle Scholar

Authors and Affiliations

  • G. Guelachvili
  • K. Narahari Rao

There are no affiliations available

Personalised recommendations