Advertisement

References for 59

59 CCH
  • G. Guelachvili
  • K. Narahari Rao
Part of the Landolt-Börnstein - Group II Molecules and Radicals book series

Abstract

Summary

This document is part of Subvolume B6 ‘Linear Triatomic Molecules - CCH’ of Volume 20 ‘Molecular Constants Mostly from Infrared Spectroscopy’ of Landolt-Börnstein - Group II Molecules and Radicals.

Keywords

Molecular Constants Mostly from Infrared Spectroscopy Linear Triatomic Molecules - CCH 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1900Hil.
    Hill, E.A.: On a system of indexing chemical literature; adopted by the classification division of the U. S. Patent Office. J. Am. Chem. Soc. 22 (1900) 478 – 494.CrossRefGoogle Scholar
  2. 29Mor.
    Morse, P.M.: Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev. 34 (1929) 57 – 64. J. Chem. Phys. 36 (1962) 519 – 534.CrossRefADSzbMATHGoogle Scholar
  3. 42Her.
    Herzberg, G.: l-type doubling in linear polyatomic molecules. Rev. Mod. Phys. 14 (1942) 219 – 223.ADSGoogle Scholar
  4. 45Her.
    Herzberg G.: Infrared and Raman spectra of polyatomic molecules. New York: Van Nostrand, 1945.Google Scholar
  5. 55Her.
    Herman, R., Wallis, R.F.: Influence of vibration-rotation interaction on line intensities in vibration rotation bands of diatomic molecules. J. Chem. Phys. 23 (1955) 637 – 646.CrossRefGoogle Scholar
  6. 55Mul.
    Mulliken, R.S.: Report on notation for the spectra of polyatomic molecules. Adopted by the IAU-IUPAP joint commission on spectroscopy. J. Chem. Phys. 23 (1955) 1997 – 2011.Google Scholar
  7. 58Ama1.
    Amat, G., Nielsen, H.H.: Vibrational l-type doubling and l-type resonance in linear polyatomic molecules. J. Mol. Spectrosc. 2 (1958) 152 – 162.ADSGoogle Scholar
  8. 58Ama2.
    Amat, G., Nielsen, H.H.: Rotational distortion in linear molecules arising from l-type resonance. J. Mol. Spectrosc. 2 (1958) 163 – 172.ADSGoogle Scholar
  9. 59Her.
    Herzberg, G.: Spectra of free radicals. Proc. Chem. Soc., 1959, 116 – 123.Google Scholar
  10. 59Pen.
    Penner, S.S.: Quantitative molecular spectroscopy and gas emissivities. Reading, Massachusetts: Addison Wesley, 1959.Google Scholar
  11. 61Joh.
    Johns, J.W.C.: The absorption spectrum of BO2. Can. J. Phys. 39 (1961) 1738 – 1768.ADSGoogle Scholar
  12. 63Ove.
    Overend, J.: Quantitative intensity studies and dipole moment derivatives. Infrared spectroscopy and molecular structure, Davies, M.M. (ed.), Amsterdam: Elsevier, 1963, p. 345 – 376.Google Scholar
  13. 66Her.
    Herzberg G.: Electromagnetic spectra and electronic structure of polyatomic molecules. New York: Van Nostrand, Reinhold Co., 1966.Google Scholar
  14. 67Mak1.
    Maki, A.G., Lide, D.R.: Microwave and infrared measurements on HCN and DCN. Observations on l-type resonance doublets. J. Chem. Phys. 47 (1967) 3206 – 3210.CrossRefADSGoogle Scholar
  15. 68Suz.
    Suzuki, I.: General anharmonic force constants of carbon dioxide. J. Mol. Spectrosc. 25 (1968) 479 – 500.CrossRefADSGoogle Scholar
  16. 71Ama.
    Amat, G., Nielsen, H.H., Tarrago, G.: Rotation vibration of polyatomic molecules. New York: M. Dekker, 1971.Google Scholar
  17. 72Ama.
    Amano, T., Hirota, E.: Hyperfine interactions of the free NCO radical in the Δ vibronic state (v2 = 1). J. Chem. Phys. 57 (1972) 5608 – 5610.CrossRefADSGoogle Scholar
  18. 72And.
    Anderson, A.B.: Theoretical approach to potential energy functions for linear AB2, ABC and bent AB2 triatomic molecules. J. Chem. Phys. 57 (1972) 4143 – 4152.ADSGoogle Scholar
  19. 72Hoy.
    Hoy, A.R., Mills, I.M., Strey, G.: Anharmonic force constant calculations. Mol. Phys. 24 (1972) 1265 – 1290.ADSGoogle Scholar
  20. 72Pli.
    Pliva, J.: Molecular constants for the bending modes of acetylene 12C2H2. J. Mol. Spectrosc. 44 (1972) 165 – 182.ADSGoogle Scholar
  21. 72Win.
    Winnewisser, M., Winnewisser, B.P.: Millimeter wave rotational spectrum of HCNO in vibrationally excited states. J. Mol. Spectrosc. 41 (1972) 143 – 176.ADSGoogle Scholar
  22. 72Yin.
    Yin, P.K.L., Rao, K. Narahari.: Bands of HCN at 14 µm. J. Mol. Spectrosc. 42 (1972) 385 – 392.CrossRefADSGoogle Scholar
  23. 74Mil1.
    Mills, I.M.: Proceedings of the Conference on Critical Evaluation of the Chemical and Physical Structural Information, Lide, D.R. (ed.), Washington, D.C.: National Academy of Sciences, 1974, p. 269 – 288.Google Scholar
  24. 74Mil2.
    Mills, I.M.: Specialist Periodical Reports of the Chemical Society of London, No. 33, Vol. 1. Theoretical Chemistry, Nixon, R.N. (ed.), 1974, p. 110 – 159.Google Scholar
  25. 74Tuc.
    Tucker, K.D., Kutner, M.L., Thaddeus, P.: The ethynyl radical C2H — a new insterstellar molecule. Astrophys. J. 193 (1974) L115 – L119.CrossRefADSGoogle Scholar
  26. 75Bro.
    Brown, J.M., Hougen, J.T., Huber, K.-P., Johns, J.W.C., Kopp, I., Lefebvre-Brion, H., Merer, A.J., Ramsay, D.A., Rostas, J., Zare, R.N.: The labeling of parity doublet levels in linear molecules. J. Mol. Spectrosc. 55 (1975) 500 – 503.CrossRefADSGoogle Scholar
  27. 75Ros.
    Rosenkranz, P.W.: Shape of the 5 mm oxygen band in the atmosphere. IEEE Trans. Antennas Prop. AP-23 (1975) 498.ADSGoogle Scholar
  28. 75Suz1.
    Suzuki, I.: Anharmonic potential functions in polyatomic molecules as derived from their vibrational and rotational spectra. Appl. Spectrosc. Rev. 9 (1975) 249 – 301.ADSGoogle Scholar
  29. 75Suz2.
    Suzuki, I.: Anharmonic potential functions of simple molecules. II. Direct numerical diagonalization of vibrational Hamiltonian matrix and its application to CO2 and CS2. Bull. Chem. Soc. Jpn. 48 (1975) 3563 – 3572.Google Scholar
  30. 75Jac.
    Jacox, M.E.: Matrix isolation study of the vibrational spectrum and structure of HC2. Chem. Phys. 7 (1975) 424 – 432.CrossRefADSGoogle Scholar
  31. 76Jun.
    Jungen, Ch., Merer, A.J.: The Renner Teller effect. Molecular spectroscopy: Modern research, Vol. II, Rao, K. Narahari (ed.), New York: Academic Press, 1976, p. 127 – 163.Google Scholar
  32. 76Pug.
    Pugh, L.A., Rao, K. Narahari: Intensities from infrared spectra. Molecular spectroscopy: Modern research, Vol. II, Rao, K. Narahari (ed.), New York: Academic Press, 1976, p. 165 – 227.Google Scholar
  33. 79Ché.
    Chédin, A.: The carbon dioxide molecule: potential, spectroscopic, and molecular constants from its infrared spectrum. J. Mol. Spectrosc. 76 (1979) 430 – 491.ADSGoogle Scholar
  34. 79Kim.
    Kim, K., King, W.T.: Integrated intensities in hydrogen cyanide. J. Chem. Phys. 71 (1979) 1967 – 1972.ADSGoogle Scholar
  35. 79Rob.
    Robert, D., Bonamy, J.: Short range force effects in semiclassical molecular line broadening calculations. J. Phys. (Paris) 40 (1979) 923 – 933.Google Scholar
  36. 80Bul2.
    Bulanin, M.O., Bulychev, V.P., Khodos, E.B.: Determination of the parameters of the vibrational-rotational lines in the 9.4 and 10.4 μm bands of CO2 at different temperatures. Opt. Spectrosc. (English Transl.) 48 (1980) 403 – 406.ADSGoogle Scholar
  37. 80Gau.
    Gauyacq, D., Jungen, Ch.: Orbital angular momentum in triatomic molecules. V. Vibronic correlations and anharmonic effects in linear molecules. Mol. Phys. 41 (1980) 383 – 407.ADSGoogle Scholar
  38. 80Woo.
    Wootten, A., Bozyan, E.P., Garrett, D.B., Loren, R.B., Snell, R.L.: Detection of C2H in cold dark clouds. Astrophys. J. 239 (1980) 844 – 854.CrossRefADSGoogle Scholar
  39. 81Kaw.
    Kawaguchi, K., Hirota, E., Yamada, C.: Diode laser spectroscopy of the BO2 radical. Vibronic interaction between the à 2Πu and \( \tilde X^2 \Pi _g \) states. Mol. Phys. 44 (1981) 508 – 528.ADSGoogle Scholar
  40. 81Sas.
    Sastry, K.V.L.N., Helminger, P., Charo, A., Herbst, E., De Lucia, F.C.: Laboratory millimeter spectrum of CCH. Astrophys. J. 251 (1981) L119 – L120.CrossRefADSGoogle Scholar
  41. 82Car.
    Carrick, P.G., Pfeiffer, J., Curl, R.F., Koester, E., Tittle, F.K., Kasper, J.V.V.: Infrared absorption spectrum of C2H radical with color center laser. J. Chem. Phys. 76 (1982) 3336 – 3337.CrossRefADSGoogle Scholar
  42. 82Lie.
    Lie, G.C., Peyerimhoff, S.D., Buenker, R.J.: Theoretical integrated intensities for the 2ν 2 and the 2ν 2ν 2 bands of HCN and DCN. J. Mol. Spectrosc. 93 (1982) 74 – 82.CrossRefADSGoogle Scholar
  43. 82Ziu.
    Ziurys, L.M., Saykally, R.J., Plambeck, R.L., Erickson, N.R.: Detection of the N = 3 − 2 transition of CCH in Orion and determination of the molecular rotational constants. Astrophys. J. 254 (1982) 94 – 99.CrossRefADSGoogle Scholar
  44. 83Bot.
    Botschwina, P.: Infrared intensities of polyatomic molecules calculated from SCEP dipolemoment functions and anharmonic vibrational wavefunctions. I) Stretching vibration of the linear molecules HCN, HCP and C2N2. Chem. Phys. 81 (1983) 73 – 85.CrossRefADSGoogle Scholar
  45. 83Car.
    Carrick, P.G., Merer, A.J., Curl, R.F.: \( \tilde A^2 \Pi - \tilde X^2 \Sigma ^ + \) infrared electronic transition of C2H. J. Chem. Phys. 78 (1983) 3652 – 3658.CrossRefADSGoogle Scholar
  46. 83Gou.
    Gough, T.E., Orr, B.J., Scoles, G.: Laser Stark spectroscopy of carbon dioxide in a molecular beam. J. Mol. Spectrosc. 99 (1983) 143 – 158.CrossRefADSGoogle Scholar
  47. 83Hie.
    Hietanen, J.: l-resonance effects in the hot bands 3ν 5 − 2ν 5, (ν 4 + 2ν 5) − (ν 4 + ν 5) and (2ν 4 + ν 5) − 2ν 4 of acetylene. Mol. Phys. 49 (1983) 1029 – 1038. Chem. Phys. Lett. 96 (1983) 502 – 504.ADSGoogle Scholar
  48. 84DeL.
    DeLeon, R.L., Muenter, J.S.: The vibrational dipole moment function of HCN. J. Chem. Phys. 80 (1984) 3992 – 3994.ADSGoogle Scholar
  49. 84Dev.
    Devi, V.M., Rinsland, C.P., Benner, D.C.: Absolute intensity measurements of CO2 bands in the 2395 – 2680 cm−1 region. Appl. Opt. 23 (1984) 4067 – 4075.ADSGoogle Scholar
  50. 84Gor.
    Gordy, W., Cook, R.L.: Microwave molecular spectra. New York: Wiley, 1984.Google Scholar
  51. 84Say.
    Saykally, R.J., Veseth, L., Evenson, K.M.: Laser magnetic resonance rotational spectroscopy of 2Σ radicals: Ethynyl (CCH). J. Chem. Phys. 80 (1984) 2247 – 2255.CrossRefADSGoogle Scholar
  52. 84Tot.
    Toth, R.A.: Line strengths of N2O in the 1120 – 1440 cm−1 region. Appl. Opt. 23 (1984) 1825 – 1834.ADSGoogle Scholar
  53. 84Var.
    Varghese, P.L., Hanson, R K.: Tunable diode laser measurements of spectral parameters of HCN at room temperature. J. Quant. Spectrosc. Radiat. Transfer 31 (1984) 548 – 559.CrossRefADSGoogle Scholar
  54. 85Bog.
    Bogey, M., Demuynck, C., Destombes, J.L.: Millimeter and submillimeter wave spectroscopy of the deuterated ethynyl radical. Astron. Astrophys. 144 (1985) L15 – 16.ADSGoogle Scholar
  55. 85Bro.
    Brown, J.M., Purnell, M.R.: Spectroscopic parameters for triatomic free radicals and ions. Molecular spectroscopy: Modern Research, Vol. III, Rao, K. Narahari (ed.), Acad. Press., 1985, p. 249 – 296.Google Scholar
  56. 85Com.
    Combes, F., Boulanger, F., Encrenaz, P.J., Gerin, M. Bogey, M., Demuynck, C., Destombes, J.L.: Detection of interstellar CCD. Astron. Astrophys. 147 (1985) L25 – L26.ADSGoogle Scholar
  57. 85Cur1.
    Curl, R.F., Carrick, P.G., Merer, A.J.: Rotational analysis of the \( \tilde A - \tilde X \) system of C2H. J. Chem. Phys. 82 (1985) 3479 – 3486.CrossRefADSGoogle Scholar
  58. 85Cur2.
    Curl, R.F., Carrick, P.G., Merer, A.J.: Erratum: Rotational analysis of the \( \tilde A - \tilde X \) system of C2H. [J. Chem. Phys. 82 (1985) 3479], J. Chem. Phys. 83 (1985) 4278 – 4278.CrossRefADSGoogle Scholar
  59. 85Hir.
    Hirota, E.: High resolution spectroscopy of transient molecules. Springer Series in Chemical Physics, Vol. 40, Lotsch, H.K.V. (ed.), Berlin, Heidelberg: Springer Verlag, 1985, p. 21.Google Scholar
  60. 85Iol.
    Ioli, N., Panchenko, V., Pellegrino, M., Strumia, F.: Amplification and saturation in a CO2 waveguide amplifier. Appl. Phys. B 38 (1985) 23 – 30.CrossRefADSGoogle Scholar
  61. 85Jon.
    Jones, H., Lindenmeyer, J., Takami, M.: The ν 1 fundamental and associated hot bands of three isotopic forms of cyanogen fluoride by diode laser spectroscopy. J. Mol. Spectrosc. 113 (1985) 339 – 354.CrossRefADSGoogle Scholar
  62. 85Jor.
    Jorgensen, U.G., Almlof, J., Gustafsson, B., Larsson, M., Siegbahn, P.: CASSCF and CCI calculations of the vibrational band strengths of HCN. J. Chem. Phys. 83 (1985) 3034 – 3041.ADSGoogle Scholar
  63. 85Smi.
    Smith, M.A.H., Rinsland, C.P., Fridovich, B., Rao, K. Narahari: Intensities and collision broadening parameters from infrared spectra. Molecular spectroscopy: Modern research, Vol. III, Rao, K. Narahari (ed.), Orlando: Academic Press, 1985, p. 111 – 248.Google Scholar
  64. 85Vrt.
    Vrtilek, J.M., Gottlieb, C.A., Langer, W.D., Thaddeus, P., Wilson, R.W.: Laboratory and astronomical detection of the deuterated ethyl radical CCD. Astrophys. J. 296 (1985) L35 – L38.CrossRefADSGoogle Scholar
  65. 85Tan.
    Tanaka, K., Tanaka, T., Suzuki, I.: Dipole moment function of carbonyl sulfide from analysis of precise dipole moments and infrared intensities. J. Chem. Phys. 82 (1985) 2835 – 2844.ADSGoogle Scholar
  66. 85Yam.
    Yamada, K.M.T., Birss, F.W., Aliev, M.R.: Effective Hamiltonian for polyatomic molecules. J. Mol. Spectrosc. 112 (1985) 347 – 356.CrossRefADSGoogle Scholar
  67. 86Fay.
    Fayt, A., Vandenhaute, R., Lahaye, J.G.: Global rovibrational analysis of carbonyl sulfide. J. Mol. Spectrosc. 119 (1986) 233 – 266.CrossRefADSGoogle Scholar
  68. 86Hus.
    Husson, N., Chédin, A., Scott, N.A., Bailly, D., Graner, G., Lacome, N., Levy, A., Rossetti, C., Tarrago, G., Camy-Peyret, C., Flaud, J.-M., Bauer, A., Colmont, J.M., Monnanteuil, N., Hilico, J.C., Pierre, G., Loete, M., Champion, J.P., Rothman, L.S., Brown, L.R., Orton, G., Varanasi, P., Rinsland, C.P., Smith, M.A.H., Goldman, A.: The GEISA spectroscopic line parameters data bank in 1984. Ann. Geophys. Ser. A 4 (1986) 185 – 190.ADSGoogle Scholar
  69. 86Kaw3.
    Kawaguchi, K., Hirota, E.: Diode laser spectroscopy of BO2 radical: The κ2Σ ← 2Π3/2 transition of the ν 2 fundamental band. J. Mol. Spectrosc. 116 (1986) 450 – 457.CrossRefADSGoogle Scholar
  70. 86Lah.
    Lahaye, J.G., Vandenhaute, R., Fayt, A.: CO2 laser saturation Stark spectra and global Stark analysis of carbonyl sulfide. J. Mol. Spectrosc. 119 (1986) 267 – 279.CrossRefADSGoogle Scholar
  71. 86Rin.
    Rinsland, C.P., Benner, D.C., Devi, V.M.: Absolute line intensities in CO2 bands near 4.8 µm. Appl. Opt. 25 (1986) 1204 – 1214.ADSGoogle Scholar
  72. 86Sea.
    Sears, T.J.: Observation of the ν 2 band of CO2 + by diode laser absorption. Mol. Phys. 59 (1986) 259 – 274.ADSGoogle Scholar
  73. 87Ari.
    Arié, E., Lacome, N., Lévy, A.: Measurement of CO2 line broadening in the 10.4 µm laser transition at low temperatures. Appl. Opt. 26 (1987) 1636 – 1640.ADSGoogle Scholar
  74. 87Gen.
    Gentry, B., Strow, L.L.: Line mixing in a N2-broadened CO2 Q-branch observed with a tunable diode laser. J. Chem. Phys. 86 (1987) 5722 – 5730.CrossRefADSGoogle Scholar
  75. 87Jac.
    Jacox, M.E., Olson, W.B.: The \( \tilde A^2 \Pi - \tilde X^2 \Sigma ^ + \) transition of HC2 isolated in argon. J. Chem. Phys. 86 (1987) 3134 – 3142.CrossRefADSGoogle Scholar
  76. 87Kan.
    Kanamori, H., Seki, K., Hirota, E.: Infrared diode laser kinetic spectroscopy of the CCH radical ν 3 band. J. Chem. Phys. 87 (1987) 73 – 76.CrossRefADSGoogle Scholar
  77. 87Joh1.
    Johns, J.W.C.: High resolution and the accurate measurement of intensities. Mikrochim. Acta 1987, 171 – 188.Google Scholar
  78. 87Joh2.
    Johns, J.W.C.: Absolute intensity and pressure broadening measurements of CO2 in the 4.3-mm region. J. Mol. Spectrosc. 125 (1987) 442 – 464.CrossRefADSGoogle Scholar
  79. 87Kan.
    Kanamori, H., Seki, K., Hirota, E.: Infrared diode laser kinetic spectroscopy of the CCH radical ν 3 band. J. Chem. Phys. 87 (1987) 73 – 76.CrossRefADSGoogle Scholar
  80. 87Kaw2.
    Kawashima, Y., Endo, Y., Kawaguchi, K., Hirota, E.: Detection and equilibrium molecular structure of a short-lived molecule, HBO, by microwave spectroscopy. Chem. Phys. Lett. 135 (1987) 441 – 445.CrossRefADSGoogle Scholar
  81. 87Men.
    Menoux, V., Le Doucen, R., Boulet, C.: Line shape in the low frequency wing of self-broadened CO2 lines. Appl. Opt. 26 (1987) 554 – 562.ADSGoogle Scholar
  82. 87Qua.
    Quapp, W.: A redefined anharmonic potential energy surface of HCN. J. Mol. Spectrosc. 125 (1987) 122 – 127.CrossRefADSGoogle Scholar
  83. 87Rot.
    Rothman, L.S., Gamache, R.R., Goldman, A., Brown, L.R., Toth, R.A., Pickett, H.M., Poynter, R.L., Flaud, J.-M., Camy-Peyret, C., Barbe, A., Husson, N., Rinsland, C.P., Smith, M.A.H.: The HITRAN database: 1986 edition. Appl. Opt. 26 (1987) 4058 – 4097.ADSGoogle Scholar
  84. 87She.
    Shepherd, R.A., Graham, W.R.M.: FTIR study of D13C substituted C2H in solid argon. J. Chem. Phys. 86 (1987) 2600 – 2605.CrossRefADSGoogle Scholar
  85. 87Wat.
    Watson, J.K.G.: Quadratic Herman-Wallis factors in the fundamental bands of linear molecules. J. Mol. Spectrosc. 125 (1987) 428 – 441.CrossRefADSGoogle Scholar
  86. 87Yam.
    Yamada, K.M.T., Klebsch, W.: High temperature spectrum of OCS in a dc discharge by diode laser spectroscopy. J. Mol. Spectrosc. 125 (1987) 380 – 392.CrossRefADSGoogle Scholar
  87. 87Yan1.
    Yan, W.-B., Hall, J.L., Stephens, J.W., Richnow, M.L., Curl, R.F.: Color center laser spectroscopy of vibrationally excited C2H. J. Chem. Phys. 86 (1987) 1657 – 1661.ADSGoogle Scholar
  88. 87Yan2.
    Yan, W.-B., Dane, C.B., Zeitz, D., Hall, J.L., Curl, R.F.: Color center laser spectroscopy of C2H and C2D. J. Mol. Spectrosc. 123 (1987) 486 – 495.CrossRefADSGoogle Scholar
  89. 87Woo.
    Woodward, D.R., Pearson, J.C., Gottlieb, C.A., Thaddeus, P., Guelin, M.: Laboratory study of the rotational spectrum of vibrationally excited C2H. Astron. Astrophys. 186 (1987) L14 – L18.ADSGoogle Scholar
  90. 88Bot.
    Botschwina, P.: Anharmonic potential energy surfaces, vibrational frequencies and infrared intensities calculated from highly correlated wavefunctions. J. Chem. Soc. Faraday Trans. 2 84 (1988) 1263 – 1276.Google Scholar
  91. 88Bro.
    Brown, J.M., Evenson, K.M.: The far-infrared laser magnetic resonance spectrum of vibrationally excited C2H. J. Mol. Spectrosc. 131 (1988) 161 – 171.CrossRefADSGoogle Scholar
  92. 88Coo.
    Cooper, D.L., Murphy, S.C.: Ab Initio geometries for C2n+1H, C2n+1H+ and C2n+1H2 species for n = 1, 2, 3. Astrophys. J. 333 (1988) 482 – 490.CrossRefADSGoogle Scholar
  93. 88Kan1.
    Kanamori, H., Hirota, E.: Infrared diode laser kinetic spectroscopy of the CCD radical ν 3 band. J. Chem. Phys. 88 (1988) 6699 – 6701.CrossRefADSGoogle Scholar
  94. 88Kan2.
    Kanamori, H., Hirota, E.: Vibronic bands of the CCH radical observed by infrared diode laser kinetic spectroscopy. J. Chem. Phys. 89 (1988) 3962 – 3969.ADSGoogle Scholar
  95. 88Kaw.
    Kawaguchi, K., Amano, T., Hirota, E.: Infrared diode laser spectroscopy of the ν 2 + ν 3 band of CCH. J. Mol. Spectrosc. 131 (1988) 58 – 65.CrossRefADSGoogle Scholar
  96. 88Kea.
    Keady, J.L., Hinkle, K.H.: C2H in the micron infrared spectrum of IRC + 10216. Astrophys. J. 331 (1988) 539 – 546CrossRefADSGoogle Scholar
  97. 88Mak1.
    Maki, A.G., Burkholder, J.B., Sinha, A., Howard, C.J.: Fourier transform infrared spectroscopy of the BO2 radical. J. Mol. Spectrosc. 130 (1988) 238 – 248.ADSGoogle Scholar
  98. 88Pet.
    Peterson, K.A., Woods, R.C.: An investigation of the HBCl+-BClH+ system by Møller-Plesset perturbation theory. J. Chem. Phys. 88 (1988) 1074 – 1079.ADSGoogle Scholar
  99. 88Ros1.
    Rosenmann, L., Hartmann, J.M., Perrin, M.Y., Taine, J.: Accurate calculated tabulations of IR and Raman CO2 line broadening by CO2, H2O, N2, O2 in the 300 – 2400 K temperature range. Appl. Opt. 27 (1988) 3902 – 3907.ADSCrossRefGoogle Scholar
  100. 88Ros2.
    Rosenmann, L., Hartmann, J.M., Perrin, M.Y., Taine, J.: Collisional broadening of CO2 IR lines. II. Calculations. J. Chem. Phys. 88 (1988) 2999 – 3006.ADSGoogle Scholar
  101. 88Ste.
    Stephens, J.W., Yan, W.-B., Richnow, M.L., Solka, H., Curl, R.F.: Infrared Kinetic Spectroscopy of C2H and C2D. J. Mol. Struct. 190 (1988) 41 – 60.CrossRefADSGoogle Scholar
  102. 88Ver.
    Vervloet, M., Herman, M.: Fourier transform emission spectroscopy of C2H. Chem. Phys. Lett. 144 (1988) 48 – 50.CrossRefADSGoogle Scholar
  103. 89Bog.
    Bogey, M., Demuynck, C., Destombes, J.L.: Submillimeter wavw spectra of the 13C monosubstituted forms of CCH. Determination of the substitution structure. Mol. Phys. 66 (1989) 955 – 960.ADSGoogle Scholar
  104. 89Boi2.
    Boissoles, J., Menoux, V., Le Doucen, R., Boulet, C., Robert, D.: Collisionally induced population transfer effect in infrared absorption spectra. II. The wing of the Ar-broadened ν 3 band of CO2. J. Chem. Phys. 91 (1989) 2163 – 2171.CrossRefADSGoogle Scholar
  105. 89Dux.
    Duxbury, G., Gang, Y.: Fourier transform spectroscopy of HCN in the 14 µm region. J. Mol. Spectrosc. 138 (1989) 541 – 561.CrossRefADSGoogle Scholar
  106. 89Fle.
    Fletcher, R.R., Leone, S.R.: Photodissociation dynamics of C2H2 at 193 nm: Vibrational distributions of the C2H radical and the rotational state distribution of the à (010) state by time-resolved Fourier transform infrared emission. J. Chem. Phys. 90 (1989) 871 – 879.CrossRefADSGoogle Scholar
  107. 89Lan.
    Lander, D.R., Unfried, K.G., Stephens, J.W., Glass, G.P., Curl, R.F.: Reaction mechanism of C2H + O2. J. Phys. Chem. 93 (1989) 4109 – 4116.CrossRefGoogle Scholar
  108. 89Lar.
    Larzillière, M., Jungen, Ch.: Fast ion beam spectroscopy of N2O+. Effects of orbital angular momentum and vibrational anharmonicity. Mol. Phys. 67 (1989) 807 – 837.ADSGoogle Scholar
  109. 89Kaw.
    Kawashima, Y., Endo, Y., Hirota, E.: Microwave spectrum, molecular structure and force field of HBO. J. Mol. Spectrosc. 133 (1989) 116 – 127.CrossRefADSGoogle Scholar
  110. 89Sta.
    Starovoitov, V.S., Trushin, S.A., Churakov, V.V., Pivovarchik, V.-F.: Dipole moments of laser transitions of isotopic carbon dioxide. Experiment and theory. J. Quant. Spectrosc. Radiat. Transfer 41 (1989) 153 – 160.CrossRefADSGoogle Scholar
  111. 89Tho.
    Thomas, M.E., Linevsky, M.J.: Integrated intensities of N2, CO2, and SF6 vibrational bands from 1800 to 5000 cm−1 as a function of density and temperature. J. Quant. Spectrosc. Radiat. Transfer 42 (1989) 465 – 476.CrossRefADSGoogle Scholar
  112. 89Var.
    Varanasi, P., Chudamani, S.: Intensity measurements in the 720.8 cm−1 Q-branch of 12C16O2. J. Geophys. Res. 94 (1989) 13069 – 13072.ADSGoogle Scholar
  113. 90Car2.
    Carter, S., Handy, N.C., Mills, I.M.: Vibrational calculations of rovibrational states: a precise high energy surface of HCN. Philos. Trans. Roy. Soc. London A 332 (1990) 309 – 327.ADSCrossRefGoogle Scholar
  114. 90Gam.
    Gamache, R.R., Hawkins, R.L., Rothman, L.S.: Total internal partition sums in the temperature range 70 – 3000 K: atmospheric linear molecules. J. Mol. Spectrosc. 142 (1990) 205 – 219.CrossRefADSGoogle Scholar
  115. 91Ama.
    Amat, G.: Linear relations between vibrational energy levels of CO2 and fourth order spectroscopic constants. Mol. Phys. 73 (1991) 685.ADSGoogle Scholar
  116. 91Bro.
    Brodbeck, C., Thanh, N.V., Bouanich, J.-P., Boulet, C., Jean-Louis, A., Bezard, B., De Bergh, C.: Measurements of pure CO2 absorption at high densities near 2.3 µm. J. Geophys. Res. Planets 96(E2) (1991) 17 497 – 17 500.ADSGoogle Scholar
  117. 91Erv.
    Ervin, K. K., Lineberger, W. C.: Photoelectron spectra of C2 and C2H. J. Phys. Chem. 95 (1991) 1167 – 1177.CrossRefGoogle Scholar
  118. 91Fru.
    Frum, C.I., Engelman jr., R., Bernath, P.F.: Fourier transform emission spectroscopy of BeF2 at 6.5 µm. J. Chem. Phys. 95 (1991) 1435 – 1440.CrossRefADSGoogle Scholar
  119. 91Her.
    Herman, M., Huet, T.R., Kabbadj, Y., Vander Auwera, J.: l-type resonance in C2H2. Mol. Phys. 72 (1991) 75 – 88.ADSGoogle Scholar
  120. 91Mak1.
    Maki, A.G., Wells, J.S., Burkholder, J.B.: High resolution measurements of the bands of carbonyl sulfide between 2510 and 3150 cm−1. J. Mol. Spectrosc. 147 (1991) 173 – 181.CrossRefADSGoogle Scholar
  121. 91Mas.
    Masukidi, L.S., Lahaye, J.G., Fayt, A.: Intracavity CO laser Stark spectroscopy of the ν 3 band of carbonyl sulfide. J. Mol. Spectrosc. 148 (1991) 281 – 302.CrossRefADSGoogle Scholar
  122. 91Per1.
    Peric, M., Engels, B., Peyerimhoff, S.D.: Ab initio investigation of the vibronic structure of the C2H spectrum: calculation of the hyperfine coupling constants for the three lowest-lying electronic states. J. Mol. Spectrosc. 150 (1991) 56 – 69.ADSGoogle Scholar
  123. 91Per2.
    Peric, M., Engels, B., Peyerimhoff, S.D.: Ab initio investigation of the vibronic structure of the C2H spectrum: computation of the vibronically averaged values for the hyperfine coupling constants. J. Mol. Spectrosc. 150 (1991) 70 – 85.ADSGoogle Scholar
  124. 91Per3.
    Peric, M., Peyerimhoff, S.D., Buenker, R.J.: Ab initio investigation of the vibronic structure of the C2H spectrum: calculation of vibronic energies and wavefunctions for various isotopomers. J. Mol. Spectrosc. 148 (1991) 180 – 200.ADSGoogle Scholar
  125. 91Per4.
    Peric, M., Reuter, W., Peyerimhoff, S.D.: Ab initio investigation of the vibronic structure in the C2H spectrum: spin-orbit splitting of the vibronic levels1. J. Mol. Spectrosc. 148 (1991) 201 – 212.ADSGoogle Scholar
  126. 91Yan.
    Yan, W.-B., Warner, H. E., Amano, T.: Difference-frequency laser spectroscopy of gas phase C2D in the 2800 cm−1 region. J. Chem. Phys. 94 (1991) 1712 – 1716.ADSGoogle Scholar
  127. 92Bot.
    Botschwina, P., Sebald, P., Bogey, M., Demuynck, C., Destombes, J.-L.: The millimeter-wave spectra of FN2 +, and FCO+ and ab initio calculations for FCN, FCO+, FN2 +, and FNC. J. Mol. Spectrosc. 153 (1992) 255 – 275.CrossRefADSGoogle Scholar
  128. 92Jen.
    Jensen, P.: Calculation of molecular rotation vibration energies directly from the potential energy function. Methods in Computational Molecular Physics, Proceedings of the NATO Advanced Study Institute, Bad Windsheim, Germany 1991, Wilson, S., Diercksen, G.H.F. (eds.), New York: Plenum Press, 1992.Google Scholar
  129. 92Lév.
    Lévy, A., Lacome, N., Chackerian jr., C.: Collisional line mixing. In: Spectroscopy of the Earth's atmosphere and the interstellar medium, Rao, K. Narahari, Weber, A. (eds.), San Diego: Academic Press, Inc., 1992, p. 261 – 330.Google Scholar
  130. 92Mar.
    Margottin-Maclou, M., Henry, A., Valentin, A.: Line mixing in the Q-branches of the ν 1 + ν 2 band of nitrous oxide and of the (1110)I ← 0220 band of carbon dioxide. J. Chem. Phys. 96 (1992) 1715 – 1723.CrossRefADSGoogle Scholar
  131. 92Tef.
    Teffo, J.L., Sulakshina, O.N., Perevalov, V.I.: Effective Hamiltonian for rovibrational energies and line intensities of carbon dioxide. J. Mol. Spectrosc. 156 (1992) 48 – 64.CrossRefADSGoogle Scholar
  132. 92Wat.
    Wattson, R.B., Rothman, L.S.: Direct numerical diagonalization: wave of the future. J. Quant. Spectrosc. Radiat. Transfer 48 (1992) 763 – 780.CrossRefADSGoogle Scholar
  133. 93Car.
    Carter, S., Mills, I.M., Handy, N.C.: Vibration rotation variational calculations; precise results for HCN up to 25 000 cm−1. J. Chem. Phys. 99 (1993) 4379 – 4390.ADSGoogle Scholar
  134. 93Che.
    Chen, F.-T., Chou, L.-C., Hsu, Y.-C.: Paper B2, presented at the 22nd International Symposium on Free radicals, Doorwerth, The Netherlands, 1993.Google Scholar
  135. 93Hsu.
    Hsu, Y.-C., Lin, J. Jr.-M., Papousek, D., Tsai, J.-J.: The low-lying bending vibrational levels of the \( CCH(\tilde X^2 \Sigma ^ + ) \) radical studied by laser-induced fluorescence. J. Chem. Phys. 98 (1993) 6690 – 6696.CrossRefADSGoogle Scholar
  136. 93Lar.
    Larzillière, M., Lacoursière, J., Idrissi, M.C.E., Varfalvy, N., Lafleur, P., Ross, A.J.: Fastion-beam laser spectroscopy of CO2 +: Laser-induced fluorescence of the \( \tilde A^2 \Pi _u - \tilde X^2 \Pi _g \) electronic transition. Phys. Rev. A48 (1993) 471 – 478.ADSGoogle Scholar
  137. 93McN.
    McNaughton, D., Bruget, D.N.: The infrared spectrum of chlorophosphaethyne, CICP. J. Mol. Spectrosc. 161 (1993) 336 – 350.CrossRefADSGoogle Scholar
  138. 93Mey.
    Meyer, F., Meyer, Cl., Bredohl, H., Dubois, I., Saouli, A., Blanquet, G.: A complete study of the ν 3 band and associated hot bands of ClC≡N. J. Mol. Spectrosc. 158 (1993) 247 – 262.CrossRefADSGoogle Scholar
  139. 93Mil.
    Mills, I.M.: Potential energy surfaces and vibrational anharmonicity. Recent experimental and computational advances in molecular spectroscopy, Rui Rausto (ed.). NATO ASI Ser., Ser. C 406 (1993) 79 – 98.Google Scholar
  140. 93Yan.
    Yan, W.-B., Amano, T.: Difference-frequency laser spectroscopy of the 3ν 2 + ν 3 band of C2H. J. Chem. Phys. 99 (1993) 4312 – 4317.CrossRefADSGoogle Scholar
  141. 94Fra.
    Francisco, J.S., Richardson, S.L.: Determination of the heats of formation of CCCN and HCCCN. J. Chem. Phys. 101 (1994) 7707 – 7711.CrossRefADSGoogle Scholar
  142. 94Rac1.
    Rachet, F., Margottin-Maclou, M., El Azizi, M., Henry, A., Valentin, A.: Linestrength measurements for N2O around 4 µm: Π ← Σ, Π ← Π, Σ ← Π and Δ ← Π transitions in 14N2 16O (2400 – 2850 cm−1). J. Mol. Spectrosc. 164 (1994) 196 – 209.CrossRefADSGoogle Scholar
  143. 94Sal.
    Saleck, A.H., Simon, R., Winnewisser, G., Wouterloot, J.G.A.: Detection of interstellar 13CCH and C13CH. Can. J. Phys. 72 (1994) 747 – 754.ADSGoogle Scholar
  144. 94Sch.
    Schurman, M.J., Dunjko, V., Goldstein, S., Baron, M., Mantz, A.W.: Line strengths for Δν 3 = 1 transitions in isotopic CS2 species with a stabilized tunable diode laser. J. Quant. Spectrosc. Radiat. Transfer 52 (1994) 379 – 388.CrossRefADSGoogle Scholar
  145. 94Scu.
    Scutaru, D., Rosenmann, L., Taine, J.: Approximate intensities of CO2 hot bands at 2.7, 4.3 and 12 µm for high temperature and medium resolution applications. J. Quant. Spectrosc. Radiat. Transfer 52 (1994) 765 – 781.CrossRefADSGoogle Scholar
  146. 94Str.
    Strow, L.L., Tobin, D.C., Hannon, S.E.: A compilation of first order line mixing coefficients for CO2 Q-branches. J. Quant. Spectrosc. Radiat. Transfer 52 (1994) 281 – 294.ADSGoogle Scholar
  147. 94Tef.
    Teffo, J.-L., Perevalov, V.I., Lyulin, O.M.: Reduced effective Hamiltonian for a global treatment of rovibrational energy levels of nitrous oxide. J. Mol. Spectrosc. 168 (1994) 390 – 403.CrossRefADSGoogle Scholar
  148. 94Wan.
    Wang, D.S., Bowman, J.M.: Quantum calculations of unusual mode specificity in H + C2H2 > H2 + C2H. J. Chem. Phys. 101 (1994) 8646 – 8662.ADSGoogle Scholar
  149. 94Wat.
    Watson, J.K.G., Vervloet, M., Rostas, J., Klapstein, D.: Analysis of low-J perturbations in the \( \tilde B(000)^2 \Sigma _u ^ + \) electronic state of the CO2 + molecular ion. Mol. Phys. 83 (1994) 211 – 233.ADSGoogle Scholar
  150. 95For.
    Forney, D., Jacox, M.E., Thompson, W.E.: The infrared and near-infrared spectra of HCC and DCC trapped in solid neon. J. Mol. Spectrosc. 170 (1995) 178 – 214.CrossRefADSGoogle Scholar
  151. 95Har.
    Hartmann, J.-M., Boulet, C., Margottin-Maclou, M., Rachet, F., Khalil, B., Thibault, F., Boissoles, J.: Simple modelling of Q-branch absorption. I. Theoretical model and application to CO2 and N2O. J. Quant. Spectrosc. Radiat. Transfer 54 (1995) 705 – 722.ADSGoogle Scholar
  152. 95Hsu.
    Hsu, Y.C., Shiu, Y.J., Lin, C.M.: Laser-induced fluorescence spectroscopy of \( CCH\tilde X^2 \Sigma ^ + n \) n vibrationally excited levels up to 4500 cm−1. J. Chem. Phys. 103 (1995) 5919 – 5930.ADSGoogle Scholar
  153. 95Lav.
    Lavorel, B., Fanjoux, G., Millot, G.: Line coupling effects in anisotropic Raman Q-branches of the ν 1/2ν 2 Fermi dyad in CO2. J. Chem. Phys. 103 (1995) 9903 – 9906.CrossRefADSGoogle Scholar
  154. 95Mar.
    Martin, J.M.L., Taylor, P.R.: Accurate ab initio total atomization energies of the C-n clusters (n = 2 – 10). J. Chem. Phys. 102 (1995) 8270 – 8273.CrossRefADSGoogle Scholar
  155. 95McC.
    McCarthy, M.C., Gottlieb, C.A., Thaddeus, P.: Rotational spectrum and hyperfine structure of 13CCH and C13CH. J. Mol. Spectrosc. 173 (1995) 303 – 307.CrossRefADSGoogle Scholar
  156. 95McN.
    McNaughton, D., Metha, G.F., Tay, R.: Generation of transient species by laser induced pyrolysis. The high resolution Fourier transform infrared spectrum of NCN. Chem. Phys. 198 (1995) 107 – 117.CrossRefGoogle Scholar
  157. 95Per.
    Peric, M., Engels, B.: Ab initio investigation of the vibronic and magnetic hyperfine effects in the \( \tilde X^2 \Pi _u \) state of B2H2 +. J. Mol. Spectrosc. 174 (1995) 334 – 352.CrossRefADSGoogle Scholar
  158. 95Som.
    Some, E., Remy, F., Macauhercot, D., Dubois, I., Breton, J., Bredohl, H.: The near UV emission spectrum of C2H. J. Mol. Spectrosc. 173 (1995) 44 – 48.CrossRefADSGoogle Scholar
  159. 95Zha.
    Zhang, J., Riehn, C.W., Dulligan, M., Wittig, C.: Propensities toward C2H Ã 2Π in acetylene photodissociation. J. Chem. Phys. 103 (1995) 6815 – 6818.ADSGoogle Scholar
  160. 96Eri.
    Eriksson, L.A., Laaksonen, A.: Hybrid DFT-MD simulations of geometry and hyperfine structure of the CCH radical in argon matrices at low temperatures. J. Chem. Phys. 105 (1996) 8195 – 8203.CrossRefADSGoogle Scholar
  161. 96Gia.
    Gianturco, F.A., Kumar, S., Schneider, F.: Correlation effects and vibronic coupling features in the interaction of H ions with N−2 molecules. J. Chem. Phys. 105 (1996) 156 – 164.CrossRefADSGoogle Scholar
  162. 96Pfe.
    Pfelzer, C., Havenith, M., Peric, M., Murtz, P., Urban, W.: Faraday laser magnetic resonance spectroscopy of vibrationally excited C2H. J. Mol. Spectrosc. 176 (1996) 28 – 37.CrossRefADSGoogle Scholar
  163. 96Var.
    Varfalvy, N., Lafleur, P., Larzillière, M.: Fast ion beam laser spectroscopy of 13CO2 +: Laser induced fluorescence of the \( \tilde A^2 \Pi _u - \tilde X^2 \Pi _g \) electronic transition. J. Mol. Spectrosc. 177 (1996) 1 – 8.CrossRefADSGoogle Scholar
  164. 97Bea.
    Beaton, S.A., Brown, J.M.: Laser excitation spectroscopy of the \( \tilde A^3 \Pi _u - \tilde X^3 \Pi _g ^ - \) transition of the NCN radical. 2. The ν 2 hot band. J. Mol. Spectrosc. 183 (1997) 347 – 359.CrossRefADSGoogle Scholar
  165. 97Mar.
    Marr, J.M., Trevor, J.S.: High-resolution infrared diode laser spectroscopy of the CBr1. J. Mol. Spectrosc. 184 (1997) 413 – 433.CrossRefADSGoogle Scholar
  166. 97Tan1.
    Tanaka, K., Sakaguchi, K., Tanaka, T.: Time-resolved infrared diode laser spectroscopy of the ν 1 band of the iron carbonyl radical (FeCO) produced by the ultravoilet photolysis of Fe(CO)5. J. Chem. Phys. 106 (1997) 2118 – 2128.ADSGoogle Scholar

Authors and Affiliations

  • G. Guelachvili
  • K. Narahari Rao

There are no affiliations available

Personalised recommendations