Skip to main content

Computing All Integer Solutions of a General Elliptic Equation

  • Conference paper
Algorithmic Number Theory (ANTS 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1838))

Included in the following conference series:

Abstract

The Elliptic Logarithm Method has been applied with great success to the problem of computing all integer solutions of equations of degree 3 and 4 defining elliptic curves. We explore the possibility of extending this method to include any equation f(u,v)=0, where f ∈ℤ[u,v] defines an irreducible curve of genus 1, independent of shape or degree of the polynomial f. We give a detailed description of the general features of our approach, putting forward along the way some claims (one of which conjectural) that are supported by the explicit examples added at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bremner, A., Stroeker, R.J., Tzanakis, N.: On sums of consecutive squares. J. Number Th. 62, 39–70 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Coates, J.: Construction of rational functions on a curve. Proc. Camb. Philos. Soc. 68, 105–123 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  3. David, S.: Minorations de formes linéaires de logarithmes elliptiques. Mémoires Soc. Math. France (N.S) 62 (1995)

    Google Scholar 

  4. Dwork, B.M., van der Poorten, A.: The Eisenstein constant. Duke Math. J. 65, 23–43 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dwork, B.M., van der Poorten, A.: Corrections to “The Eisenstein constant”. Duke Math. J. 76, 669–672 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gebel, J., Pethö, A., Zimmer, H.G.: Computing integral points on elliptic curves. Acta Arith. 68, 171–192 (1994)

    MATH  MathSciNet  Google Scholar 

  7. Gebel, J., Pethö, A., Zimmer, H.G.: On Mordell’s equation. Compositio Math. 110, 335–367 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Schmidt, W.M.: Eisenstein’s theorem on power series expansions of algebraic functions. Acta Arithm. 56, 161–179 (1990)

    MATH  Google Scholar 

  9. Schmidt, W.M.: Integer points on curves of genus 1. Compositio Math. 81, 33–59 (1992)

    MATH  MathSciNet  Google Scholar 

  10. Silverman, J.H.: The difference between the Weil height and the canonical height on elliptic curves. Math. Comp. 55, 723–743 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Stroeker, R.J.: On the sum of consecutive cubes being a perfect square. Compositio Math. 97, 295–307 (1995)

    MATH  MathSciNet  Google Scholar 

  12. Stroeker, R.J., Tzanakis, N.: Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms. Acta Arith. 67, 177–196 (1994)

    MATH  MathSciNet  Google Scholar 

  13. Stroeker, R.J., Tzanakis, N.: On the Elliptic Logarithm Method for Elliptic Dio- phantine Equations: Reflections and an improvement. Experim. Math. 8, 135–149 (1999)

    MATH  MathSciNet  Google Scholar 

  14. Stroeker, R.J., de Weger, B.M.M.: Elliptic Binomial Diophantine Equations. Math. Comp. 68, 1257–1281 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Stroeker, R.J., de Weger, B.M.M.: Solving elliptic diophantine equations: the general cubic case. Acta Arith. 87, 339–365 (1999)

    MATH  MathSciNet  Google Scholar 

  16. Tzanakis, N.: Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms. The case of quartic equations. Acta Arith. 75, 165–190 (1996)

    MATH  MathSciNet  Google Scholar 

  17. Walker, R.J.: Algebraic Curves. Springer, New-York (1978)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stroeker, R.J., Tzanakis, N. (2000). Computing All Integer Solutions of a General Elliptic Equation. In: Bosma, W. (eds) Algorithmic Number Theory. ANTS 2000. Lecture Notes in Computer Science, vol 1838. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10722028_37

Download citation

  • DOI: https://doi.org/10.1007/10722028_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67695-9

  • Online ISBN: 978-3-540-44994-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics