Skip to main content

Interactive Learning of World Model Information for a Service Robot

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1724))

Abstract

In this paper, the problem of generating a suitable environment model for a service robot is addressed. For a service robot to be commercially attractive, it is important that it has a high degree of flexibility and that it can be installed without expert assistance. This means that the representations for doing planning and execution of tasks must be taught on-line and on-site by the user. Here a solution is proposed where the user interactively teaches the robot its representations, using the robot’s existing navigation and perception modules. Based on a context adaptive architecture and purposive sensing modules it is shown how compact, symbolic representations sufficient for planning and robust execution of tasks can be generated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hägele, M. (ed.): Serviceroboter – ein Beitrag zur Innovation im Dienstleistungswesen. Fraunhofer–Institut für Produktionstechnik und Automatisierung (IPA), Foreword (In German) (1994)

    Google Scholar 

  2. Gat, E.: Three–Layer Architectures. In: Kortenkamp, D., Bonasso, R.P., Murphy, R. (eds.) Artificial Intelligence and Mobile Robots., pp. 195–210. AAAI Press/The MIT Press (1998)

    Google Scholar 

  3. Meystel, A.: Autonomous Mobile Robots. World Scientific Press, Singapore (1991)

    Google Scholar 

  4. Firby, R.J.: Adaptive Execution in Dynamic Domains. Yale University, Department of Computer Science (1989)

    Google Scholar 

  5. Simmons, R.G.: Structured Control for Autonomous Robots. IEEE Trans. on Robotics and Automation 10(1), 34–43 (1994)

    Article  Google Scholar 

  6. Gat, E.: Robot Navigation by Conditional Sequencing. In: Proc. of the 1994 IEEE Int. Conf. on Robotics and Automation, San Diego, California, pp. 1293–1299. IEEE Computer Society Press, Los Alamitos (1994)

    Google Scholar 

  7. Fujita, M., Kageyama, K.: An Open Architecture for Robot Entertainment. In: Proceedings of the First Int. Conf. on Autonomous Agents, pp. 435–442. ACM, New York (1997)

    Chapter  Google Scholar 

  8. Elfes, A.: Sonar–Based Real–World Mapping and Navigation. IEEE Journal of Robotics and Automation 3(3), 249–265 (1987)

    Article  Google Scholar 

  9. Kuipers, B.J., Buyn, Y.-T.: A Robust, Qualitative Method for Robot Spatial Learning. In: Proceedings of the Seventh National Conference on Artificial Intelligence., pp. 774–779. AAAI Press, Menlo Park (1988)

    Google Scholar 

  10. Kuipers, B.J., Buyn, Y.-T.: A Robot Exploration and Mapping Strategy Based on a Semantic Hierarchy of Spatial Representations. Robotics and Autonomous Systems 8, 47–63 (1991)

    Article  Google Scholar 

  11. Koenig, S., Simmons, R.G.: Xavier: A Robot Navigation Architecture Based on Partially Observable Markov Decision Process Models. In: Kortenkamp, D., Bonasso, R.P., Murphy, R. (eds.) Artificial Intelligence and Mobile Robots., pp. 91–122. AAAI Press/The MIT Press (1998)

    Google Scholar 

  12. Thrun, S., Bücken, A., Burgard, W., Fox, D., Fröhlinghaus, T., Hennig, D., Hofmann, T., Krell, M., Schmidt, T.: Map Learning and High–Speed Navigation in RHINO. In: Kortenkamp, D., Bonasso, R.P., Murphy, R. (eds.) Artificial Intelligenceand Mobile Robots., pp. 21–52. AAAI Press/The MIT Press (1998)

    Google Scholar 

  13. Gutmann, J.–S., Nebel, B.: Navigation mobiler Roboter mit Laserscans. Autonome Mobile Systeme. Springer, Heidelberg (1997) (in German)

    Google Scholar 

  14. Henderson, T., Shilcrat, E.: Logical Sensor Systems. Journal of Robotic Systems 1(2), 169–193 (1984)

    Article  Google Scholar 

  15. Kristensen, S.: Sensor Planning with Bayesian Decision Theory. Robotics and Autonomous Systems 19, 273–286 (1997)

    Article  Google Scholar 

  16. Fox, D., Burgard, W., Thrun, S.: The Dynamic Window Approach to Collision Avoidance. IEEE Robotics and Automation Magazine 4(1), 23–33 (1997)

    Article  Google Scholar 

  17. Lu, F., Milios, E.: Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans. Journal of Intelligent Robotic Systems 18, 249–275 (1997)

    Article  Google Scholar 

  18. Lu, F., Milios, E.: Globally Consistent Range Scan Alignment for Environment Mapping. Autonomous Robots 4(4), 333–349 (1997)

    Article  Google Scholar 

  19. Jiang, X., Bunke, H.: Fast Segmentation of Range Images into Planar Regions by Scan Line Grouping. Machine Visions and Applications 7(2), 115–122 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kristensen, S. et al. (1999). Interactive Learning of World Model Information for a Service Robot. In: Christensen, H.I., Bunke, H., Noltemeier, H. (eds) Sensor Based Intelligent Robots. Lecture Notes in Computer Science(), vol 1724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10705474_4

Download citation

  • DOI: https://doi.org/10.1007/10705474_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66933-3

  • Online ISBN: 978-3-540-46619-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics