Skip to main content

Realistic Environment Models and Their Impact on the Exact Solution of the Motion Planning Problem

  • Conference paper
  • 411 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1724))

Abstract

The ability of exact motion planning algorithms to handle all possible environments often leads to high worst-case running times. These high running times are an important reason for the fact that exact algorithms are hardly used in practice. It has been noted that certain weak assumptions on the size of the robot and the distribution of the obstacles in the workspace lead to a drastic reduction of the complexity of the motion planning problem, and, in some cases, to an equally-drastic improvement of the performance of exact motion planning algorithms. We review recent extensions of the known result for one robot in a low-density environment with stationary obstacles to one robot amidst moving obstacles and to two and three robots among stationary obstacles. In addition we consider the consequences of further weakening of the assumptions on the distribution of the obstacles.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P.K., Katz, M.J., Sharir, M.: Computing depth orders for fat objects and related problems. Computational Geometry: Theory and Applications 5, 187–206 (1995)

    MATH  MathSciNet  Google Scholar 

  2. Alt, H., Fleischer, R., Kaufmann, M., Mehlhorn, K., Näher, S., Schirra, S., Uhrig, C.: Approximate motion planning and the complexity of the boundary of the union of simple geometric figures. Algorithmica 8, 391–406 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aronov, B., de Berg, M., van der Stappen, A.F., Svestka, P., Vleugels, J.: Motion planning for multiple robots. In: Proceedings of the 14th Annual ACM Symposium on Computational Geometry, pp. 374–382 (1998)

    Google Scholar 

  4. Avnaim, F., Boissonnat, J.-D., Faverjon, B.: A practical exact motion planning algorithm for polygonal objects amidst polygonal obstacles. In: Boissonnat, J.-D., Laumond, J.-P. (eds.) Geometry and Robotics. LNCS, vol. 391, pp. 67–86. Springer, Heidelberg (1989)

    Google Scholar 

  5. Basu, S., Pollack, R., Roy, M.-F.: Computing roadmaps of semi-algebraic sets on a variety. In: Cucker, F., Shub, M. (eds.) Foundations of Computational Mathematics, pp. 1–15 (1997)

    Google Scholar 

  6. Bañon, J.: Implementation and extension of the ladder algorithm. In: Proc. IEEE Int. Conf. on Robotics and Automation, pp. 1548–1553 (1990)

    Google Scholar 

  7. de Berg, M., Guibas, L., Halperin, D.: Vertical decompositions for triangles in 3-space. Discrete & Computational Geometry 15, 35–61 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. de Berg, M.: Linear size binary space partitions for uncluttered scenes, Technical Report UU-CS-1998-12, Dept. of Computer Science, Utrecht University

    Google Scholar 

  9. de Berg, M., Katz, M., van der Stappen, A.F., Vleugels, J.: Realistic input models for geometric algorithms. In: Proc. 13th Ann. ACM Symp. on Computational Geometry, pp. 294–303 (1997)

    Google Scholar 

  10. de Berg, M., Katz, M., Overmars, M., van der Stappen, A.F., Vleugels, J.: Models and motion planning. In: Arnborg, S. (ed.) SWAT 1998. LNCS, vol. 1432, pp. 83–94. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  11. Berretty, R.-P., Overmars, M., van der Stappen, A.F.: Dynamic motion planning in low obstacle density environments. Computational Geometry: Theory and Applications 11, 157–173 (1998)

    MATH  MathSciNet  Google Scholar 

  12. Canny, J., Reif, J.: New lower bound techniques for robot motion planning problems. In: Proc. 28th IEEE Symp. on Foundations of Computer Science, pp. 49–60 (1987)

    Google Scholar 

  13. Canny, J.: Computing roadmaps of general semi-algebraic sets. Comput. J. 36, 409–418 (1994)

    Article  MathSciNet  Google Scholar 

  14. Efrat, A., Rote, G., Sharir, M.: On the union of fat wedges and separating a collection of segments by a line. Computational Geometry: Theory and Applications 3, 277–288 (1993)

    MATH  MathSciNet  Google Scholar 

  15. Efrat, A., Sharir, M.: On the complexity of the union of fat objects in the plane. In: Proc. 13th Ann. ACM Symp. on Computational Geometry, pp. 104–112 (1997)

    Google Scholar 

  16. Efrat, A., Katz, M.J., Nielsen, F., Sharir, M.: Dynamic data structures for fat objects and their applications. In: Rau-Chaplin, A., Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 1997. LNCS, vol. 1272, pp. 297–306. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  17. Efrat, A., Katz, M.J.: On the union of κ-curved objects. In: Proc. 14th Ann. ACM Symp. on Computational Geometry, pp. 206–213 (1998)

    Google Scholar 

  18. Halperin, D., Overmars, M.H., Sharir, M.: Efficient motion planning for an L-shaped object. SIAM Journal on Computing 21, 1–23 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Katz, M.J., Overmars, M.H., Sharir, M.: Efficient hidden surface removal for objects with small union size. Computational Geometry: Theory and Applications 2, 223–234 (1992)

    MATH  MathSciNet  Google Scholar 

  20. Katz, M.J.: 3-D vertical ray shooting and 2-D point enclosure, range searching, and arc shooting amidst convex fat objects. Computational Geometry: Theory and Applications 8, 299–316 (1997)

    MATH  MathSciNet  Google Scholar 

  21. van Kreveld, M.: On fat partitioning, fat covering and the union size of polygons. Computational Geometry: Theory and Applications 9, 197–210 (1998)

    MATH  MathSciNet  Google Scholar 

  22. Leven, D., Sharir, M.: An efficient and simple motion planning algorithm for a ladder amidst polygonal barriers. Journal of Algorithms 8, 192–215 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  23. Matoušek, J., Pach, J., Sharir, M., Sifrony, S., Welzl, E.: Fat triangles determine linearly many holes. SIAM Journal on Computing 23, 154–169 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  24. Mitchell, J.S.B., Mount, D.M., Suri, S.: Query-sensitive ray shooting. International Journal on Computational Geometry and Applications 7, 317–347 (1997)

    Article  MathSciNet  Google Scholar 

  25. Overmars, M.H.: Point location in fat subdivisions. Information Processing Letters 44, 261–265 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  26. Overmars, M.H., van der Stappen, A.F.: Range searching and point location among fat objects. Journal of Algorithms 21, 629–656 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  27. Reif, J., Sharir, M.: Motion planning in the presence of moving obstacles. Journal of the ACM 41, 764–790 (1994)

    Article  MATH  Google Scholar 

  28. Schwartz, J.T., Sharir, M.: On the piano movers’ problem: I. The case of a two-dimensional rigid polygonal body moving amidst polygonal boundaries. Communications on Pure and Applied Mathematics 36, 345–398 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  29. Schwartz, J.T., Sharir, M.: On the piano movers’ problem: II. General techniques for computing topological properties of real algebraic manifolds. Advances in Applied Mathematics 4, 298–351 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  30. Schwartz, J.T., Sharir, M.: On the piano movers’ problem: III. Coordinating the motion of several independent bodies: the special case of circular bodies moving amidst polygonal barriers. International Journal of Robotics Research 2, 46–75 (1983)

    MathSciNet  Google Scholar 

  31. Schwartz, J.T., Sharir, M.: On the piano movers’ problem: V. The case of a rod moving in three-dimensional space amidst polyhedral obstacles. Communications on Pure and Applied Mathematics 37, 815–848 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  32. Schwartz, J.T., Sharir, M.: Efficient motion planning algorithms in environments of bounded local complexity, Report 164, Department of Computer Science, Courant Inst. Math. Sci., New York NY (1985)

    Google Scholar 

  33. Schwarzkopf, O., Vleugels, J.: Range searching in low-density environments. Information Processing Letters 60, 121–127 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  34. Sharir, M., Ariel-Sheffi, E.: On the piano movers’ problem: IV. Various decomposable two-dimensional motion planning problems. Communications on Pure and Applied Mathematics 37, 479–493 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  35. Sifrony, S., Sharir, M.: A new efficient motion planning algorithm for a rod in two-dimensional polygonal space. Algorithmica 2, 367–402 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  36. van der Stappen, A.F., Halperin, D., Overmars, M.H.: The complexity of the free space for a robot moving amidst fat obstacles. Computational Geometry: Theory and Applications 3, 353–373 (1993)

    MATH  MathSciNet  Google Scholar 

  37. van der Stappen, A.F.: The complexity of the free space for motion planning amidst fat obstacles. Journal of Intelligent and Robotic Systems 11, 21–44 (1994)

    Article  MATH  Google Scholar 

  38. van der Stappen, A.F., Overmars, M.H.: Motion planning amidst fat obstacles. In: Proc. 10th Ann. ACM Symp. on Computational Geometry, pp. 31–40 (1994)

    Google Scholar 

  39. van der Stappen, A.F.: Motion planning amidst fat obstacles, Ph.D. Thesis, Dept. of Computer Science, Utrecht University (1994)

    Google Scholar 

  40. van der Stappen, A.F.: Efficient exact motion planning in realistic environments. In: Bunke, H., Noltemeier, H., Kanade, T. (eds.) Modelling and Planning for Sensor Based Intelligent Robot Systems. Series on Machine Perception & Artificial Intelligence, vol. 21, pp. 51–66. World Scientific Publ. Co., Singapore (1995)

    Chapter  Google Scholar 

  41. van der Stappen, A.F., Overmars, M.H., de Berg, M., Vleugels, J.: Motion planning in environments with low obstacle density. Discrete & Computational Geometry 20, 561–587 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  42. Sutner, K., Maass, W.: Motion planning among time dependent obstacles. Acta Informatica 26, 93–133

    Google Scholar 

  43. Vleugels, J.: On fatness and fitness—realistic input models for geometric algorithms, Ph.D. Thesis, Dept. of Computer Science, Utrecht University (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van der Stappen, A.F. (1999). Realistic Environment Models and Their Impact on the Exact Solution of the Motion Planning Problem. In: Christensen, H.I., Bunke, H., Noltemeier, H. (eds) Sensor Based Intelligent Robots. Lecture Notes in Computer Science(), vol 1724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10705474_10

Download citation

  • DOI: https://doi.org/10.1007/10705474_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66933-3

  • Online ISBN: 978-3-540-46619-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics