Skip to main content

Test Pattern Generation under Low Power Constraints

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1596))

Abstract

A technique is proposed to reduce the peak power consumption of sequential circuits during test pattern application. High-speed computation intensive VLSI systems, as telecommunication systems, make power management during test a critical problem. A Genetic Algorithm computes a set of redundant test sequences, then a genetic optimization algorithm selects the optimal subset of sequences able to reduce the consumed power, without reducing the fault coverage. Experimental results gathered on benchmark circuits show that our approach decreases the peak power consumption by 20% on the average with respect to the original test sequence generated ignoring the power dissipation problem, without affecting the fault coverage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Corno, F., Rebaudengo, M., Reorda, M.S.: Experiences in the Use of Evolutionary Techniques for Testing Digital Circuits”, Invited Paper, Applications and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation. In: Bosacchi, B., Fogel, D., Bezdek, J. (eds.) Proceedings of SPIE, vol. 3455, pp. 128–139 (1998)

    Google Scholar 

  2. Abramovici, M., Breuer, M.A., Friedman, A.D.: Digital systems testing and testable design. Computer Science Press, New York (1990)

    Google Scholar 

  3. Zorian, Y.: A Distributed BIST Control Scheme for Complex VLSI Devices. In: IEEE 11th VLSI Test Symposium, pp. 4–9 (1993)

    Google Scholar 

  4. Wang, S., Gupta, S.K.: ATPG for Heat Dissipation Minimization during Scan Testing. In: IEEE Design Automation Conference, pp. 614–619 (1997)

    Google Scholar 

  5. Silva, J., Monteiro, J., Sakallah, K.A.: Test Pattern Generation for Circuit Using Power Managment Techniques. In: IEEE European Test Workshop (1997)

    Google Scholar 

  6. Costa, J., Flores, P., Neto, H., Monteiro, J., Marques Silva, J.P.: Power Reduction in BIST by Exploiting Don’t Cares in Test Patterns. In: IEEE Internation Workshop on Logic Synthesis (1998)

    Google Scholar 

  7. Girard, P., Landrault, C., Pravossoudovitch, S., Severac, D.: Reducing Power Consumption during Test Application by Test Vector Ordering. In: IEEE International Symposium on Circuits And Systems (1998)

    Google Scholar 

  8. Corno, F., Prinetto, P., Rebaudengo, M., Reorda, M.S.: A Test Pattern Generation methodology for low power consumption. In: IEEE 16th IEEE VLSI Test Symposium, pp. 453–457 (1998)

    Google Scholar 

  9. Corno, F., Rebaudengo, M., Reorda, M.S., Violante, M.: Transformation-based Peak Power Reduction for Test Sequences. In: to be presented at IEEE Alessandro Volta Memorial Workshop on Low Power Design (1999)

    Google Scholar 

  10. Li, P.C., Young, T.K.: Electromigrations: The Time Bomb in Deep-Submicron ICs. IEEE Spectrum 33(9), 75–78 (1996)

    Article  Google Scholar 

  11. Chakravarty, S., Dabholkar, V.: Minimizing Power Dissipation in Scan Circuits During Test Application. In: IEEE Workshop on Low Power Design, pp. 51–56 (1994)

    Google Scholar 

  12. Wang, S., Gupta, S.: ATPG for Heat Dissipation Minimization During Test Application. IEEE Trans. on Computers 47(2), 256–262 (1998)

    Article  Google Scholar 

  13. Pedram, M.: Power Minimization in IC Design: Principles and Applications. ACM Transaction on Design Automation of Electronic Systems 1(1), 3–56 (1996)

    Article  Google Scholar 

  14. Corno, F., Prinetto, P., Rebaudengo, M., Reorda, M.S.: GATTO: a Genetic Algorithm for Automatic Test Pattern Generation for Large Synchronous Sequential Circuits. IEEE Transactions on Computer Aided Design 15(8), 943–951 (1996)

    Article  Google Scholar 

  15. Brglez, F., Bryant, D., Kozminski, K.: Combinational profiles of sequential benchmark circuits. In: Proc. Int. Symp. on Circuits And Systems, pp. 1929–1934 (1989)

    Google Scholar 

  16. Salz, A., Horowitz, M.: Irsim: An incremental mos swith-level simulator. In: Design Automation Conference, pp. 173–178 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Corno, F., Rebaudengo, M., Sonza Reorda, M., Violante, M. (1999). Test Pattern Generation under Low Power Constraints. In: Poli, R., Voigt, HM., Cagnoni, S., Corne, D., Smith, G.D., Fogarty, T.C. (eds) Evolutionary Image Analysis, Signal Processing and Telecommunications. EvoWorkshops 1999. Lecture Notes in Computer Science, vol 1596. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10704703_13

Download citation

  • DOI: https://doi.org/10.1007/10704703_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65837-5

  • Online ISBN: 978-3-540-48917-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics