Skip to main content

Descriptive Complexity, Lower Bounds and Linear Time

  • Conference paper
Computer Science Logic (CSL 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1584))

Included in the following conference series:

Abstract

This paper surveys two related lines of research:

  • Logical characterizations of (non-deterministic) linear time complexity classes, and

  • non-expressibility results concerning sublogics of existential second-order logic.

Starting from Fagin’s fundamental work there has been steady progress in both fields with the effect that the weakest logics that are used in characterizations of linear time complexity classes are closely related to the strongest logics for which inexpressibility proofs for concrete problems have been obtained. The paper sketches these developments and highlights their connections as well as the obstacles that prevent us from closing the remaining gap between both kinds of logics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajtai, M.: Σ1 1 formulae on finite structures. Ann. of Pure and Applied Logic 24, 1–48 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ajtai, M., Fagin, R.: Reachability is harder for directed than for undirected nite graphs. Journal of Symbolic Logic 55(1), 113–150 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ajtai, M., Fagin, R., Stockmeyer, L.: The closure of monadic NP. IBM Research Report RJ 10092 (1997)

    Google Scholar 

  4. Arora, S., Fagin, R.: On winning strategies in Ehrenfeucht-Fraïssé games. Theoretical Computer Science 174(1-2), 97–121 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Baker, T., Gill, J., Solovay, R.: Relativizations of the P =? NP question. SIAM Journal on Computing 4(4), 431–442 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  6. Book, R.V., Greibach, S.A.: Quasi-realtime languages. Mathematical System Theory 4(2), 97–111 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  7. Büchi, R.: Weak second-order arithmetic and finite automata. Z. Math. Logik Grundlagen Math. 6, 66–92 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cook, S.A.: A hierarchy for nondeterministic time complexity. Journal of Computer and System Sciences 7(4), 343–353 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cosmadakis, S.: Logical reducibility and monadic NP. In: Proc. 34th IEEE Symp. on Foundations of Computer Science, pp. 52–61 (1993)

    Google Scholar 

  10. de Rougemont, M.: Second-order and inductive definability on finite structures. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 33, 47–63 (1987)

    Article  MATH  Google Scholar 

  11. Durand, A., Fagin, R., Loescher, B.: Spectra with only unary function symbols. In: Nielsen, M. (ed.) CSL 1997. LNCS, vol. 1414, pp. 189–202. Springer, Heidelberg (1998)

    Google Scholar 

  12. Durand, A., Lautemann, C., Schwentick, T.: Subclasses of binary NP. Journal of Logic and Computation 8(2), 189–207 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Durand, A., Ranaivoson, S.: First-order spectra with one binary predicate. Theoretical Computer Science 160(1-2), 305–320 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ebbinghaus, H.-D., Flum, J.: Finite Model Theory. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  15. Ehrenfeucht, A.: An application of games to the completeness problem for formalized theories. Fund. Math. 49, 129–141 (1961)

    MATH  MathSciNet  Google Scholar 

  16. Eiter, T., Gottlob, G., Gurevich, Y.: Existential second-order logic over strings. In: LICS 1998 (1998)

    Google Scholar 

  17. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets. In: Karp, R.M. (ed.) Complexity of Computation, SIAM-AMS Proceedings, vol. 7, pp. 43–73 (1974)

    Google Scholar 

  18. Fagin, R.: Monadic generalized spectra. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 21, 89–96 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fagin, R.: Easier ways to win logical games. In: Proceedings of the DIMACS Workshop on Finite Models and Descriptive Complexity. American Mathematical Society, Providence (1997)

    Google Scholar 

  20. Fagin, R., Stockmeyer, L., Vardi, M.: On monadic NP vs. monadic co-NP. Information and Computation 120, 78–92 (1995); Preliminary version appeared in 1993 IEEE Conference on Structure in Complexity Theory, pp. 19-30 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Fraïssé, R.: Sur quelques classifications des systèmes de relations. Publ. Sci. Univ. Alger. Sér. A 1, 35–182 (1954)

    Google Scholar 

  22. Grädel, E.: On the notion of linear time computability. Int. J. Found. Comput. Sci. 1, 295–307 (1990)

    Article  MATH  Google Scholar 

  23. Grandjean, E.: A natural NP-complete problem with a nontrivial lower bound. SIAM Journal of Computing 17, 786–809 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  24. Grandjean, E.: Invariance properties of RAMs and linear time. Computational Complexity 4, 62–106 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  25. Grandjean, E.: Linear time algorithms and NP-complete problems. SIAM Journal of Computing 23, 573–597 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  26. Grandjean, E.: Sorting, linear time and the satisfiability problem. Annals of Mathematics and Artificial Intelligence 16, 183–236 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  27. Grandjean, E., Olive, F.: Monadic logical definability of NP-complete problems. In: Proc. 1994 of the Annual Conference of the EACSL, pp. 190–204 (1994) (Extended version submitted)

    Google Scholar 

  28. Grandjean, E., Schwentick, T.: Machine-independent characterizations and complete problems for deterministic linear time (1998) (in preparation)

    Google Scholar 

  29. Gurevich, Y., Shelah, S.: Nearly linear time. In: Meyer, A.R., Taitslin, M.A. (eds.) Logic at Botik 1989. LNCS, vol. 363, pp. 108–118. Springer, Heidelberg (1989)

    Google Scholar 

  30. Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms. Transactions of the AMS 117, 285–306 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  31. Hopcroft, J., Paul, W., Valiant, L.: On time versus space. Journal of the ACM 24(2), 332–337 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  32. Immerman, N.: Descriptive Complexity. In: Graduate Texts in Computer Science. Springer, New York (1998)

    Google Scholar 

  33. Kreidler, M., Seese, D.: Monadic NP and built-in trees. In: van Dalen, D., Bezem, M. (eds.) CSL 1996. LNCS, vol. 1258, pp. 260–274. Springer, Heidelberg (1997)

    Google Scholar 

  34. Kreidler, M., Seese, D.: Monadic NP and graph minors. In: CSL 1998 (1998)

    Google Scholar 

  35. Lautemann, C., Schweikardt, N., Schwentick, T.: A logical characterization of nondeterministic linear time on Turing machines. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, p. 143. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  36. Lynch, J.F.: Complexity classes and theories of finite models. Mathematical System Theory 15, 127–144 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  37. Lynch, J.F.: On sets of relations definable by addition. Journal of Symbolic Logic 47, 659–668 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  38. Lynch, J.F.: The quantifier structure of sentences that characterize nondeterministic time complexity. Computational Complexity 2, 40–66 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  39. Maass, W., Schnitger, G., Szemerédi, E., Turán, G.: Two tapes versus one for off-line turing machines. Computational Complexity 3(4), 392–401 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  40. Olive, F.: A conjunctive logical characterization of nondeterministic linear time. In: Nielsen, M. (ed.) CSL 1997. LNCS, vol. 1414, pp. 360–372. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  41. Paul, W.J., Pippenger, N., Szemerédi, E., Trotter, W.T.: On determinism versus non-determinism and related problems (preliminary version). In: 24th Annual Symposium on Foundations of Computer Science, Tucson, Arizona, November 7-9, pp. 429–438. IEEE, Los Alamitos (1983)

    Chapter  Google Scholar 

  42. Regan, K.: Machine models and linear time complexity. SIGACT News 24(4) (Fall 1993)

    Google Scholar 

  43. Ruhl, M.: Counting and addition cannot express deterministic transitive closure (1998)

    Google Scholar 

  44. Schnorr, C.P.: Satisfiability is quasilinear complete in NQL. Journal of the ACM 25, 136–145 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  45. Schwentick, T.: Graph connectivity and monadic NP. In: Proc. 35th IEEE Symp. on Foundations of Computer Science, pp. 614–622 (1994)

    Google Scholar 

  46. Schwentick, T.: On winning Ehrenfeucht games and monadic NP. Doktorarbeit, Universität Mainz (1994)

    Google Scholar 

  47. Schwentick, T.: Graph connectivity, monadic NP and built-in relations of moderate degree. In: Proc. 22nd International Colloq. on Automata, Languages, and Programming, pp. 405–416 (1995)

    Google Scholar 

  48. Schwentick, T.: On winning Ehrenfeucht games and monadic NP. Annals of Pure and Applied Logic 79, 61–92 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  49. Schwentick, T.: Algebraic and logical characterizations of deterministic linear time classes. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 463–474. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  50. Schwentick, T.: Padding and the expressive power of existential second-order logics. In: Nielsen, M. (ed.) CSL 1997. LNCS, vol. 1414, pp. 461–477. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  51. Schwentick, T., Barthelmann, K.: Local normal forms for _rst-order logic with applications to games and automata. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 444–454. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  52. Seiferas, J.I., Fischer, M.J., Meyer, A.R.: Refinements of the nondeterministic time and space hierarchies. In: 14th Annual Symposium on Switching and Automata Theory, The University of Iowa, October 15-17, pp. 130–137. IEEE, Los Alamitos (1973)

    Chapter  Google Scholar 

  53. Stearns, R.E., Hartmanis, J., Lewis II., P.M.: Hierarchies of memory limited computations. In: Proceedings of the Sixth Annual Symposium on Switching Circuit Theory and Logical Design, pp. 179–190. IEEE, Los Alamitos (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schwentick, T. (1999). Descriptive Complexity, Lower Bounds and Linear Time. In: Gottlob, G., Grandjean, E., Seyr, K. (eds) Computer Science Logic. CSL 1998. Lecture Notes in Computer Science, vol 1584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10703163_2

Download citation

  • DOI: https://doi.org/10.1007/10703163_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65922-8

  • Online ISBN: 978-3-540-48855-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics