Identifying Semantically Similar Elements in Heterogeneous Spatial Databases Using Predicate Logic Expressions

  • Kristin Stock
  • David Pullar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1580)


For data to be successfully integrated, semantically similar database elements must be identified as candidates for merging. However, there may be significant differences between the concepts that participants in the integration exercise hold for the same real world entity. A possible method for identifying semantically similar elements prior to integration is based on cognitive science theory of concept attainment. The theory identifies inclusion rules as being the basis for the highest level of concept attainment, once concepts have been attained at lower, perceptive levels. Predicates can be used to combine inclusion rules as a basis for semantic representation of elements. The predicates for different database elements can then be compared to determine the similarities and differences between the elements. This information can be used to develop a set of semantically similar elements, and then to resolve representational conflicts between the elements prior to integration.


Semantic Similarity Conjunctive Normal Form Comparison Ratio Equivalent Element SIGMOD Record 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Apt, K.R., Bol, R.N.: Logic Programming and Negation: A Survey. Journal of Logic Programming 19-20, 9–71 (1994)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Batini, C., Lenzerini, M., Navathe, S.B.: A Comparative Analysis of Methodologies for Database Schema Integration. ACM Computing Surveys 18(4), 323–364 (1986)CrossRefGoogle Scholar
  3. 3.
    Bishr, Y.: Semantic Aspects of Interoperable GIS. Unpublished PhD Thesis, ITC, The Netherlands (1997)Google Scholar
  4. 4.
    Bourne, L.E.: Knowing and Using Concepts. Psychological Review 77(6), 546–556 (1970)CrossRefGoogle Scholar
  5. 5.
    Breitbart, Y., Olson, P.L., Thompson, G.R.: Database Integration in a Distributed Heterogeneous Database System. In: Hurson, A.R., Bright, M.W., Pakzad, S.H. (eds.) Multidatabase Systems: An Advanced Solution for Global Information Sharing, pp. 231–240. IEEE Computer Society Press, Los Alamitos (1994)Google Scholar
  6. 6.
    Bright, M.W., Hurson, A.R., Pakzad, S.: Automated Resolution of Semantic Heterogeneity in Multidatabases. ACM Transactions on Database Systems 19(2), 212–253 (1994)CrossRefGoogle Scholar
  7. 7.
    Chatterjee, A., Segev, A.: Data Manipulation in Heterogeneous Databases. SIGMOD Record 20(4), 64–68 (1991)CrossRefGoogle Scholar
  8. 8.
    Collet, C., Huhns, M.N., Shen, W.: Resource Integration Using a Large Knowledge Base in Carnot. Computer 24(12), 55–62 (1991)CrossRefGoogle Scholar
  9. 9.
    Dayal, U., Hwang, H.: View Definition and Generalization for Database Integration in a Multidatabase System. IEEE Transactions on Software Engineering 10(6), 628–645 (1984)CrossRefGoogle Scholar
  10. 10.
    Deen, S.M., Amin, R.R., Taylor, M.C.: Data Integration in Distributed Databases. In: Hurson, A.R., Bright, M.W., Pakzad, S.H. (eds.) Multidatabase Systems: An Advanced Solution for Global Information Sharing, pp. 255–259. IEEE Computer Society Press, Los Alamitos (1994)Google Scholar
  11. 11.
    Elmasri, R., Navathe, S.: Fundamentals of Database Systems. The Benjamin/Cummings Publishing Company Inc., Redwood City (1994)zbMATHGoogle Scholar
  12. 12.
    Fang, D., Hammer, H., McLeod, D.: The Identification and Resolution of Semantic Heterogeneity in Multidatabase Systems. In: Hurson, A.R., Bright, M.W., Pakzad, S.H. (eds.) Multidatabase Systems: An Advanced Solution for Global Information Sharing, pp. 52–59. IEEE Computer Society Press, Los Alamitos (1994)Google Scholar
  13. 13.
    Fankhauser, P., Neuhold, E.J.: Knowledge based integration of heterogeneous databases. In: Hsiao, D., Heuhold, E., Sacks-Davis, R. (eds.) Interoperable Database Systems (DS-5). Proceedings of the IFIP WG2.6 Database Semantics Conference on Interoperable Database Systems, Lorne, Victoria, pp. 155–175. North-Holland, Amsterdam (1993)Google Scholar
  14. 14.
    Fankhauser, P., Kracker, M., Neuhold, E.J.: Semantic vs. Structural Resemblance of Classes. SIGMOD Record 20(4), 59–63 (1991)CrossRefGoogle Scholar
  15. 15.
    Hammer, J., McLeod, D.: An Approach to Resolving Semantic Heterogeneity in a Federation of Autonomous, Heterogeneous Database Systems. International Journal of Intelligent and Cooperative Information Systems 2(1), 51–83 (1993)CrossRefGoogle Scholar
  16. 16.
    Kashyap, V., Sheth, A.: Semantics-based Information Brokering. In: Proceedings of the 3rd International ACM Conference on Information and Knowledge Management Gaithersburg, Maryland, USA, pp. 363–370 (1994)Google Scholar
  17. 17.
    Kim, W., Seo, J.: Classifying Schematic and Data Heterogeneity in Multida- tabase Systems. Computer 24(12), 12–18 (1991)CrossRefGoogle Scholar
  18. 18.
    Klausmeier, H.J., Ghatala, E.S., Frayer, D.A.: Conceptual Learning and Development. Academic Press, New York (1974)Google Scholar
  19. 19.
    Kuhn, W.: Defining Semantics for Spatial Data Transfers. In: Waugh, T.C., Healey, R.G. (eds.) Advances in GIS Research: Proceedings, Sixth International Symposium on Spatial Data Handling, Edinburgh, Scotland, vol. 1, pp. 973–987 (1994)Google Scholar
  20. 20.
    Larson, J.A., Navathe, S.B., Elmasri, R.: A Theory of Attribute Equivalence in Databases with Application to Schema Integration. IEEE Transactions on Software Engineering 15(4), 449–463 (1989)zbMATHCrossRefGoogle Scholar
  21. 21.
    Laurini, R.: Distributed Databases: An Overview. In: The AGI Source Book for Geographic Information Systems. The Association of Geographic Information, London, pp. 45–55 (1955)Google Scholar
  22. 22.
    Leech, G.: Semantics: the Study of Meaning. Penguin Books, Middlesex (1981)Google Scholar
  23. 23.
    McKeown, G.P., Rayward-Smith, V.J.: Mathematics for Computing. Macmillan Press, London (1982)Google Scholar
  24. 24.
    Mark, D.M.: Toward a Theoretical Framework for Geographical Entity Types. In: Frank, A.U., Campari, I. (eds.) Spatial Information Theory: Theoretical Basis for GIS, pp. 270–283. Springer, Berlin (1993)Google Scholar
  25. 25.
    Mark, D.M., Egenhofer, M.J., Rashid, A., Shariff, M.: Toward a Standard for Spatial Relations in SDTS and Geographic Information Systems. In: Proceedings, GIS/LIS 1995 Annual Conference and Exposition, Nashville, Tennessee, USA, November 14-16 1995, vol. 2, pp. 686–695 (1995)Google Scholar
  26. 26.
    Mark, D., Frank, A.: Concepts of Space and Spatial Language. In: Proceedings of Autocarto 9, Ninth International Symposium on Computer-Assisted Cartography, Baltimore, Maryland, April 2-7 1989, pp. 538–556 (1989)Google Scholar
  27. 27.
    Mark, D.M., Frank, A.U.: Experiential and Formal Models of Geographic Space. Environment and Planning B: Planning and Design 23(1), 3–24 (1996)CrossRefGoogle Scholar
  28. 28.
    Medin, D.L., Wattenmaker, W.D.: Category cohesiveness, theories and cognitive archaeology. In: Neisser, U. (ed.) Concepts and Conceptual Development: Ecological and Environmental Factors in Categorization, pp. 25–62. Cambridge University Press, Cambridge (1987)Google Scholar
  29. 29.
    Moore, G.T.: Theory and Research on the Development of Environmental Knowing. In: Moore, G.T., Golledge(eds, R.G. (eds.) Environmental Knowing: Theories, Research and Methods Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania, pp. 138–163 (1976)Google Scholar
  30. 30.
    Motro, A.: Superviews: Virtual Integration of Multiple Databases. IEEE Transactions on Software Engineering 13(7), 785–798 (1987)Google Scholar
  31. 31.
    Nyerges, T.: Schema integration analysis for the development of GIS databases. International Journal of Geographical Information Systems 3(2), 153–183 (1989)CrossRefGoogle Scholar
  32. 32.
    Nyerges, T.: Information Integration for Multipurpose Land Information Systems. URISA Journal (1989)Google Scholar
  33. 33.
    Beuhler, K., McKee, L. (eds.): OGIS Project Technical Committee. The OpenGIS Guide. Open GIS Consortium, Wayland (1996)Google Scholar
  34. 34.
    OpenGIS Consortium.: The Open GIS Specification Model. Topic 5: The OpenGIS Feature. OpenGIS Project Document Number, 98-105 (1998)Google Scholar
  35. 35.
    Ozsu, M.T., Valduriez, P.: Principles of Distributed Database Systems. Prentice Hall, Englewood Cliffs (1991)Google Scholar
  36. 36.
    Piaget, J., Inhelder, B.: The Child’s Conception of Space. Routledge and Kegen Paul, London (1956)Google Scholar
  37. 37.
    Reiter, R.: On Closed World Data Bases. In: Gallaire, H., Minker, J. (eds.) Logic and Databases. Plenum Press, New York (1978)Google Scholar
  38. 38.
    Rumbaugh, J.: OMT: The object model. Journal of Object Oriented Programming 8(1), 21–27 (1995)Google Scholar
  39. 39.
    Saltor, F., Castellanos, M.G., Garcia-Solaco, M.: Overcoming Schematic Discrepancies in Interoperable Databases. In: Hsiao, D., Heuhold, E., Sacks-Davis, R. (eds.) Interoperable Database Systems (DS-5). Proceedings ofthe IFIP WG2.6 Database Semantics Conference on Interoperable Database Systems, Lorne, Victoria, pp. 191–205. North-Holland, Amsterdam (1993)Google Scholar
  40. 40.
    Seligman, L., Rosenthal, A.: A Metadata Resource to Promote Data Integration, 25 September (1996),
  41. 41.
    Sheth, A.P., Gala, D.K., Navathe, S.B.: On Automatic Reasoning for Schema Integration. International Journal of Intelligent and Cooperative Information Systems 2(1), 23–50 (1993)CrossRefGoogle Scholar
  42. 42.
    Sheth, A., Kashyap, V.: So Far (Schematically) yet So Near (Semantically). In: Hsiao, D., Heuhold, E., Sacks-Davis, R. (eds.) Interoperable Database Systems (DS-5). Proceedings of the IFIP WG2.6 Database Semantics Conference on Interoperable Database Systems, Lorne, Victoria, pp. 283–312. North-Holland, Amsterdam (1993)Google Scholar
  43. 43.
    Sheth, A.P., Larson, J.A.: Federated Database Systems for Managing Distributed, Heterogeneous and Autonomous Databases. ACM Computing Surveys 22(3), 183–236 (1990)CrossRefGoogle Scholar
  44. 44.
    Simon, J.L., Burstein, P.: Basic Research Methods in Social Science. McGraw-Hill, New York (1985)Google Scholar
  45. 45.
    Spaccapietra, S., Parent, C.: Conflicts and Correspondence Assertions in Interoperable Databases. SIGMOD Record 20(4), 49–54 (1991)CrossRefGoogle Scholar
  46. 46.
    Srinavasan, U.: A Framework for Conceptual Integration of Heterogeneous Databases. Unpublished PhD Thesis, University of New South Wales (1997)Google Scholar
  47. 47.
    Stock, K.: The Representation of Geographic Object Semantics Using Inclusion Rules. In: Paper presented at GIS/LIS 1998, Fort Worth, Texas, 10-12 November (1998)Google Scholar
  48. 48.
    Urban, S.D., Wu, J.: Resolving Semantic Heterogeneity through the Explicit Representation of Data Model Semantics. SIGMOD Record 20(4), 55–58 (1991)CrossRefGoogle Scholar
  49. 49.
    Woodcock, J., Loomes, M.: Software Engineering Mathematics. Addison-Wesley, Reading (1988)zbMATHCrossRefGoogle Scholar
  50. 50.
    Yu, C., Jia, B., Sun, W., Dao, S.: Determining Relationships among Names in Heterogeneous Databases. SIGMOD Record 20(4), 79–80 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Kristin Stock
    • 1
  • David Pullar
    • 2
  1. 1.School of Planning, Landscape Architecture and SurveyingQueensland University of TechnologyBrisbane
  2. 2.Department of Geographical Sciences and PlanningUniversity of QueenslandBrisbane

Personalised recommendations