Skip to main content

Solving Large-Scale Eigenvalue Problems on Vector Parallel Processors

  • Conference paper
Vector and Parallel Processing – VECPAR’98 (VECPAR 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1573))

Included in the following conference series:

Abstract

We consider the development and implementation of eigensolvers on distributed memory parallel arrays of vector processors and show that the concomitant requirements for vectorisation and parallelisation lead both to novel algorithms and novel implementation techniques. Performance results are given for several large-scale applications and some performance comparisons made with LAPACK and ScaLAPACK.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenny, A., Ostrouchov, S., Sorensen, D.: LAPACK: Linear Algebra PACKage. software available from, http://www.netlib.org under directory “lapack”

  2. Arnoldi, W.: The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quarterly of Appl. Math. 9, 17–29 (1951)

    MATH  MathSciNet  Google Scholar 

  3. Bai, Z., Demmel, J.: Design of a parallel nonsymmetric eigenroutine toolbox, Part I, Tech. Rep. Computer Science Division Report UCB/CSD-92-718, University of California at Berkeley (1992)

    Google Scholar 

  4. Blackford, L., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.: ScaLAPACK: Scalable Linear Algebra PACKage. software available from, http://www.netlib.org under directory “scalapack”

  5. Demmel, J., Dhillon, I., Ren, H.: On the correctness of some bisection-like parallel eigenvalue algorithms in floating point arithmetic. Electronic Trans. Num. Anal (ETNA) 3, 116–149 (1996)

    MathSciNet  Google Scholar 

  6. Dhillon, I.: Private communication (1997)

    Google Scholar 

  7. Dhillon, I., Fann, G., Parlett, B.: Application of a new algorithm for the symmetric eigenproblem to computational quantum chemisty. In: Proc. of the Eight SIAM Conf. on Par. Proc. for Sci. Comput. SIAM, Philadelphia (1997)

    Google Scholar 

  8. Dongarra, J., Van de Geijn, R.: Reduction to condensed form for the eigenvalue problem on distributed memory architectures. Parallel Computing 18, 973–982 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Harrar II, D.: Determining optimal vector lengths for multisection on vector processors. In preparation

    Google Scholar 

  10. Harrar II, D.: Multisection vs. bisection on vector processors. In preparation

    Google Scholar 

  11. Harrar II, D., Kahn, M., Osborne, M.: Parallel solution of some largescale eigenvalue problems arising in chemistry and physics. In: Kågström, B., Elmroth, E., Waśniewski, J., Dongarra, J. (eds.) PARA 1998. LNCS, vol. 1541. Springer, Heidelberg (1998) (to appear)

    Google Scholar 

  12. Hegland, M., Osborne, M.: Wrap-around partitioning for block bidiagonal systems. IMA J. Num. Anal. (to appear)

    Google Scholar 

  13. Henry, G., Watkins, D., Dongarra, J.: A parallel implemenations of the nonsymmetric QR algorithm for distributed memory architectures, Tech. Rep. Computer Science Technical Report CS-97-355, University of Tennessee at Knoxville (1997)

    Google Scholar 

  14. Ipsen, I.: Computing an eigenvector with inverse iteration. SIAM Review 39, 254–291 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ladouceur, F.: Numerical Photonics Library, version 1.0 (1997)

    Google Scholar 

  16. Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Nat. Bur. Standards 45, 255–282 (1950)

    MathSciNet  Google Scholar 

  17. Lehoucq, R., Meerbergen, K.: Using generalized Cayley transformations within an inexact rational Krylov sequence method. SIAM J. Mat. Anal. and Appl. (to appear)

    Google Scholar 

  18. Lehoucq, R., Sorensen, D.: Deflation techniques for an implicitly restarted Arnoldi iteration. SIAM J. Mat. Anal. and Appl. 8, 789–821 (1996)

    Article  MathSciNet  Google Scholar 

  19. Lehoucq, R., Sorensen, D., Vu, P.: ARPACK: An implementation of the Implicitly Restarted Arnoldi Iteration that computes some of the eigenvalues and eigenvectors of a large sparse matrix (1995)

    Google Scholar 

  20. Marcuse, D.: Solution of the vector wave equation for general dielectric waveguides by the Galerkin method. IEEE J. Quantum Elec. 28(2), 459–465 (1992)

    Article  Google Scholar 

  21. Maschoff, K., Sorensen, D.: P-ARPACK: An efficient portable large scale eigenvalue package for distributed memory parallel architectures. In: Madsen, K., Olesen, D., Waśniewski, J., Dongarra, J. (eds.) PARA 1996. LNCS, vol. 1184. Springer, Heidelberg (1996)

    Google Scholar 

  22. Meerbergen, K., Spence, A., Roose, D.: Shift-invert and Cayley transforms for detection of rightmost eigenvalues of nonsymmetric matrices. BIT 34, 409–423 (1995)

    Article  MathSciNet  Google Scholar 

  23. Nakanishi, M., Ina, H., Miura, K.: A high performance linear equation solver on the VPP500 parallel supercomputer. In: Proc. Supercomput. 1994 (1994)

    Google Scholar 

  24. Osborne, M.: Inverse iteration, Newton’s method, and nonlinear eigenvalue problems. In: The Contributions of J.H. Wilkinson to Numerical Analysis, Symposium Proc. The Inst. for Math. and its Appl., vol. 19 (1979)

    Google Scholar 

  25. Osborne, M., Harrar II, D.: Inverse iteration and deflation in general eigenvalue problems, Tech. Rep. Mathematics Research Report No. MRR 012-97, Australian National University (submitted)

    Google Scholar 

  26. Parlett, B.: The Symmetric Eigenvalue Problem. Prentice Hall, Englewood Cliffs (1980)

    MATH  Google Scholar 

  27. Parlett, B., Dhillon, I.: Fernando’s solution to Wilkinson’s problem: an application of double factorization. Lin. Alg. Appl. 267, 247–279 (1997)

    MATH  MathSciNet  Google Scholar 

  28. Parlett, B., Saad, Y.: Complex shift and invert stategies for real matrices. Lin. Alg. Appl. 88/89, 575–595 (1987)

    Article  MathSciNet  Google Scholar 

  29. Rasmussen, A., Smith, S.: Private communication (1998)

    Google Scholar 

  30. Ruhe, A.: The rational Krylov algorithm for nonsymmetric eigenvalue problems, III: Complex shifts for real matrices. BIT 34, 165–176 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  31. Saad, Y.: Variations on Arnoldi’s method for computing eigenelements of large unsymmetric matrices. Lin. Alg. Appl. 34, 269–295 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  32. Saad, Y.: Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems. Math. Comp. 42(166), 567–588 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  33. Saad, Y.: Least squares polynomials in the complex plane and their use for solving parse nonsymmetric linear systems. SIAM J. Numer. Anal. 24, 155–169 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  34. Saad, Y.: Numerical Methods for Large Eigenvalue Problems. Series in Algorithms and Architectures for Advanced Scientific Computing. Manchester University Press, Manchester (1992)

    MATH  Google Scholar 

  35. Sadkane, M.: A block Arnoldi-Chebyshev method for computing the leading eigenpairs of large sparse unsymmetric matrices. Numer. Math. 64, 181–193 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  36. Scott, J.: An Arnoldi code for computing selected eigenvalues of sparse real unsymmetric matrices. ACM Trans. on Math. Soft. 21, 432–475 (1995)

    Article  MATH  Google Scholar 

  37. Simon, H.: Bisection is not optimal on vector processors. SIAM J. Sci. Stat. Comput. 10, 205–209 (1989)

    Article  MATH  Google Scholar 

  38. Sorensen, D.: Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Mat. Anal. and Appl. 13, 357–385 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  39. Thiel, W.: Program MNDO 1994, version 4.1 (1994)

    Google Scholar 

  40. Wilkinson, J.: The Algebraic Eigenvalue Problem. Clarendon Press, Oxford (1965)

    MATH  Google Scholar 

  41. Wright, S.: A collection of problems for which Gaussian elimination with partial pivoting is unstable. SIAM J. Sci. Stat. Comput. 14, 231–238 (1993)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harrar, D.L., Osborne, M.R. (1999). Solving Large-Scale Eigenvalue Problems on Vector Parallel Processors. In: Hernández, V., Palma, J.M.L.M., Dongarra, J.J. (eds) Vector and Parallel Processing – VECPAR’98. VECPAR 1998. Lecture Notes in Computer Science, vol 1573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10703040_9

Download citation

  • DOI: https://doi.org/10.1007/10703040_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66228-0

  • Online ISBN: 978-3-540-48516-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics