Skip to main content

Influence of the Discretization Scheme on the Parallel Efficiency of a Code for the Modelling of a Utility Boiler

  • Conference paper
Vector and Parallel Processing – VECPAR’98 (VECPAR 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1573))

Included in the following conference series:

  • 544 Accesses

Abstract

A code for the simulation of the turbulent reactive flow with heat transfer in a utility boiler has been parallelized using MPI. This paper reports a comparison of the parallel efficiency of the code using the hybrid central differences/upwind and the MUSCL schemes for the discretization of the convective terms of the governing equations. The results were obtained using a Cray T3D and a number of processors in the range 1 – 128. It is shown that higher efficiencies are obtained using the MUSCL scheme and that the least efficient tasks are the solution of the pressure correction equation and the radiative heat transfer calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coelho, P.J., Carvalho, M.G.: Application of a Domain Decomposition Technique to the Mathematical Modelling of a Utility Boiler. International Journal for Numerical Methods in Engineering 36, 3401–3419 (1993)

    Article  Google Scholar 

  2. Leonard, B.P., Drummond, J.E.: Why You Should Not Use ”Hybrid” Powerlaw, or Related Exponential Schemes for Convective Modelling–Are Much Better Alternatives. Int. J. Num. Meth. Fluids 20, 421–442 (1995)

    Article  MATH  Google Scholar 

  3. Harter, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly High Order Essentialy Non-Oscillatory Schemes, III. J. Comput Phys. 71, 231–303 (1987)

    Article  MathSciNet  Google Scholar 

  4. Gaskell, P.H., Lau, A.K.C.: Curvature-compensated Convective Transport: SMART, a New Boundedness-transport Algorithm. Int. J. Num. Meth. Fluids 8, 617–641 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Zhu, J.: On the Higher-order Bounded Discretization Schemes for Finite Volume Computations of Incompressible Flows. Computer Methods Appl. Mech. Engrg. 98, 345–360 (1992)

    Article  MATH  Google Scholar 

  6. Darwish, M.S.: A New High-Resolution Scheme Based on the Normalized Variable Formulation. Numerical Heat Transfer, Part B 24, 353–371 (1993)

    Article  Google Scholar 

  7. Lien, F.S., Leschziner, M.A.: Upstream Monotonic Interpolation for Scalar Transport with Application to Complex Turbulent Flows. Int. J. Num. Meth. Fluids 19, 527–548 (1994)

    Article  MATH  Google Scholar 

  8. Choi, S.K., Nam, H.Y., Cho, M.: A Comparison of Higher-Order Bounded Convection Schemes. Computer Methods Appl. Mech. Engrg. 121, 281–301 (1995)

    Article  MATH  Google Scholar 

  9. Kobayashi, M.H., Pereira, J.C.F.: A Comparison of Second Order Convection Discretization Schemes for Incompressible Fluid Flow. Communications in Numerical Methods in Engineering 12, 395–411 (1996)

    Article  MATH  Google Scholar 

  10. Blake, R., Carter, J., Coelho, P.J., Cokljat, D., Novo, P.: Scalability and Efficiency in Parallel Calculation of a Turbulent Incompressible Fluid Flow in a Pipe. In: Proc. 2nd Int. Meeting on Vector and Parallel Processing (Systems and Applications), Porto, June 25-25 (1996)

    Google Scholar 

  11. Van Leer, B.: Towards the Ultimate Conservative Difference Scheme. V. A Second- Order Sequel to Godunov’s Method. J. Comput. Physics 32, 101–136 (1979)

    Article  Google Scholar 

  12. Libby, P.A., Williams, F.A.: Turbulent Reacting Flows. Springer, Berlin (1980)

    MATH  Google Scholar 

  13. Fiveland, W.A.: Discrete-ordinates Solutions of the Radiative Transport Equation for Rectangular Enclosures. J. Heat Transfer 106, 699–706 (1984)

    Article  Google Scholar 

  14. Fiveland, W.A.: The Selection of Discrete Ordinate Quadrature Sets for Anistropic Scattering. HTD-160, ASME, 89–96 (1991)

    Google Scholar 

  15. Coelho, P.J., Gonalves, J.M., Carvalho, M.G., Trivic, D.N.: Modelling of Radiative Heat Transfer in Enclosures with Obstacles. International Journal of Heat and Mass Transfer 41, 745–756 (1998)

    Article  MATH  Google Scholar 

  16. Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation (1980)

    Google Scholar 

  17. Khosla, P.K., Rubin, S.G.: A Diagonally Dominant Second-order Accurate Implicit Scheme. Computers & Fluids 1, 207–209 (1974)

    Article  Google Scholar 

  18. Darwish, M.S., Moukalled, F.H.: Normalized Variable and Space Formulation Methodology for High-Resolution Schemes. Numerical Heat Transfer, Part B 26, 79–96 (1994)

    Article  Google Scholar 

  19. Coelho, P.J., Gonalves, J., Novo, P.: Parallelization of the Discrete Ordinates Method: Two Different Approaches. In: Palma, J.M.L.M., Dongarra, J. (eds.) VECPAR 1996. LNCS, vol. 1215, pp. 222–235. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  20. Gonalves, J., Coelho, P.J.: Parallelization of the Discrete Ordinates Method. Numerical Heat Transfer. Part B: Fundamentals 32, 151–173 (1997)

    Article  Google Scholar 

  21. Cassiano, J., Heitor, M.V., Moreira, A.L.N., Silva, T.F.: Temperature, Species and Heat Transfer Characteristics of a 250 MWe Utility Boiler. Combustion Science and Technology 98, 199–215 (1994)

    Article  Google Scholar 

  22. Carvalho, M.G., Coelho, P.J., Moreira, A.L.N., Silva, A.M.C., Silva, T.F.: Comparison of Measurements and Predictions of Wall Heat Flux and Gas Composition in an Oil-fired Utility Boiler. In: 25th Symposium (Int.) on Combustion, The Combustion Institute, pp. 227-234 (1994)

    Google Scholar 

  23. Coelho, P.J., Carvalho, M.G.: Evaluation of a Three-Dimensional Mathematical Model of a Power Station Boiler. ASME J. Engineering for Gas Turbines and Power 118, 887–895 (1996)

    Article  Google Scholar 

  24. Coelho, P.J.: Parallel Simulation of Flow, Combustion and Heat Transfer in a Power Station Boiler. In: 4th ECCOMAS Computational Fluid Dynamics Conference, Athens, Greece, September 7-11 (1998)

    Google Scholar 

  25. Coelho, P.J., Novo, P.A., Carvalho, M.G.: Modelling of a Utility Boiler using Parallel Computing. In: 4th Int. Conference on Technologies and Combustion for a Clean Environment, July 7-10 (1997)

    Google Scholar 

  26. Rhie, C.M., Chow, W.L.: Numerical Study of the Turbulent Flow past an Airfoil with Trailing Edge Separation. AIAA J. 21, 1525–1532 (1983)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Coelho, P.J. (1999). Influence of the Discretization Scheme on the Parallel Efficiency of a Code for the Modelling of a Utility Boiler. In: Hernández, V., Palma, J.M.L.M., Dongarra, J.J. (eds) Vector and Parallel Processing – VECPAR’98. VECPAR 1998. Lecture Notes in Computer Science, vol 1573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10703040_16

Download citation

  • DOI: https://doi.org/10.1007/10703040_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66228-0

  • Online ISBN: 978-3-540-48516-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics