Advertisement

Fossil Energy pp 187-199 | Cite as

5.2 Wireless power transmission

5 Transmission of electric power
  • H. Matsumoto
Part of the Landolt-Börnstein - Group VIII Advanced Materials and Technologies book series

Abstract

Summary

This document is part of Subvolume A ‘Fossil Energy’ of Volume 3 ‘Energy Technologies’ of Landolt-Börnstein - Group VIII Advanced Materials and Technologies.

Keywords

Energy Technologies Fossil Energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5.2.7 References for 5

  1. 46Ald.
    Alder, R.: A study of locking phenomena in oscillators, Proc. of the IRE 34 (June 1946) 351–357.CrossRefGoogle Scholar
  2. 59van.
    Van Atta, L.C.: Electromagnetic Reflector, U. S. Patent No.2908002, Oct. 1959.Google Scholar
  3. 64Pon.
    Pon, C.Y.: Retrodirective array using the Heterodyne technique, IEEE-Trans. AP 12 no.2 (1964) 176–180.ADSGoogle Scholar
  4. 64Sko.
    Skolnik, M.I., King, D.D.: Self-phasing array antennas, IEEE-Trans. AP 12 no.2 (1964). 142–149.ADSGoogle Scholar
  5. 66Wat.
    Watson, D.C., Tabbot, K.T., Johnson, C.C.: A Cyclotron Wave Microwave Power Convertor. Proc. IEEE, No. 11, p. 1797, 1966.Google Scholar
  6. 68Bro1.
    Brown, W.C.: Thermionic diode rectifier, in Microwave Power Engineering, Vol. 1, Okress, E.C. (Ed.), New York: Academic, 1968, 295–298.Google Scholar
  7. 68Bro2.
    Brown, W.C.: The combination receiving antenna and rectifier, in Microwave Power Engineering, Vol. II, Okress, E.C. (Ed.), New York: Academic, 1968, 273–275.Google Scholar
  8. 68Gla.
    Glaser, P. E.: Power from the Sun, Science 162 (1968) 857–886.ADSGoogle Scholar
  9. 68Wat.
    Watson, D.C., Grow, R.W., Johnson, C.C.: A Rectifier with Transverse Interaction, Microwave Power Engineering (edited by Okress E. C.), New York and London: Academic Press, 1 (1968) 408–419.Google Scholar
  10. 69Bro1.
    Brown, W.C.: Experiments involving a microwave beam to power and position a helicopter, IEEE Trans. Aerosp. Electron. Systems, AES-5, 5 (1969) 692–702.CrossRefADSGoogle Scholar
  11. 69Bro2.
    Brown, W.C.: Progress in the design of rectennas, J. Microwave Power 4 (1969) 168–175.Google Scholar
  12. 70Wat.
    Watson, D.C., Grow, R.W., Johnson, C.C.: A Cyclotron Wave Rectifier for S-Band and X-Band, J. Microwave Power 5 no. 2 (1970) 72.Google Scholar
  13. 75Dic.
    Dickinson, R.M., Brown, W.C.: Radiated microwave power transmission system efficiency measurements, Tech-Memo 33-727, Jet Propulsion Lab., Cal. Inst. Technol., March 15, 1975.Google Scholar
  14. 79Gut.
    Gutmann, R.J., Borrego, J.M.: Power Combining in an Array of Microwave Power Rectifier, IEEE Trans. Microwave Theory Tech. 27 (1979) 958–968.ADSCrossRefGoogle Scholar
  15. 80Fin.
    Final Proc. Solar Power Satellite Program Rev. DOE/NASA Satellite Power System Concept Develop. Evaluation Program, Conf.-800491, July 1980.Google Scholar
  16. 82Mat1.
    Matsumoto, H.: Numerical estimation of SPS microwave impact on ionospheric environment, Acta Astronautica 9 (1982) 493–497.CrossRefzbMATHGoogle Scholar
  17. 82Mat2.
    Matsumoto, H., Kaya, N., Kimura, I., Miyatake, S., Nagatomo, M., Obayashi, T.; MINIX Project toward the Solar Power Satellite — Rocket experiment of microwave energy transmission and associated nonlinear plasma physics in the ionosphere, ISAS Space Energy Symposium (1982) 69–76.Google Scholar
  18. 84Bro.
    Brown, W.C.: The history of power transmission by radio waves, IEEE transaction on microwave theory and techniques, MTT-32 (1984) 1230–1242.CrossRefADSGoogle Scholar
  19. 86Ito.
    Itoh, K., Ohgane, T., Ogawa, Y.: Rectenna Composed of a Circular Microstrip Antenna, Space Power (1986) 193–198.Google Scholar
  20. 86Kay.
    Kaya, N., Matsumoto, H., Miyatake, S., Kimura, I., Nagatomo, M., Obayashi, T.: Nonlinear interaction of strong microwave beam with the ionosphere, Space Power 6 (1986) 181–186.Google Scholar
  21. 86Nag.
    Nagatomo, M., Kaya, N., Matsumoto, H.: Engineering aspect of the microwave ionosphere nonlinear interaction experiment (MINIX) with a sounding rocket, Acta Astronautica, 13 (1986) 23–29.CrossRefGoogle Scholar
  22. 87Mat.
    Matsumoto, H., Kaya, N., Nagatomo, N., Hashizume, T., Nakatsuka, K.: Feasibility Study on Retrodirective System for METS, The Sixth ISAS Space Energy Symposium, 24, March 1987.Google Scholar
  23. 88Bro.
    Brown, W.C.: The SPS transmitter designed around the magnetron directional amplifier, Space Power 7 no. 1 (1988) 37–49.Google Scholar
  24. 88Kim.
    Kimura, I., Matsumoto, H., Kaya, N., Miyatake, S.: Plasma wave excitation by intense microwave transmission from a space vehicle, Advances in Space Research 8 (1988) 291–294.CrossRefADSGoogle Scholar
  25. 90Ots.
    Otsuka, M., Omuro, N., Kakizaki, K., Saitoh, S., Kuroda, M.: Relation between Spacing and Receiving Efficiency of Finite Rectenna Array (in Japanese), IEICE J73-B-II (1990) 133–139.Google Scholar
  26. 90Tok.
    Tokisawa, M., Itoh, T., Fujita, M., Teshirogi, T.: Study of a Rectenna element for a Stratosphere Radio Relay System (in Japanese), IEICE Technical Report. AP-89 (1990) 7–10.Google Scholar
  27. 91Van.
    Vanke, V.A., Savvin, V.L.: Cyclotron Wave Converter for SPS Energy Transmission System, Proc. of Sec. Intern. Symp. “SPS 91 Power from Space”, Paris, (1991) 515–520.Google Scholar
  28. 92KAY.
    Kaya, N., Matsumoto, H., Akiba, R.: Rocket Experiment METS Microwave Energy Transmission in Space, Space Power 11 no. 3 & 4 (1992) 267–274.Google Scholar
  29. 92McS.
    McSpadden, J.O., Yoo, T., Chang, K.: Theoretical and Experimental Investigation of a Rectenna Element for Microwave Power Transmission, IEEE Trans. Microwave Theory Tech. 40 (1992) 2359–2366.ADSCrossRefGoogle Scholar
  30. 92Yoo.
    Yoo, T., Chang, K.: Theoretical and Experimental Development of 10 and 35 GHz, IEEE Trans. Microwave Theory Tech. 40 (1992) 1259–1266.ADSCrossRefGoogle Scholar
  31. 93Ito.
    Ito, T., Fujino, Y., Fujita, M.: Fundamental Experiment of a Rectenna Array for Microwave Power Reception, IEICE Trans. Commun. E76-B (1993) 1508–1513.Google Scholar
  32. 93Tra.
    Tran, M., Nguyen, C.: A New Rectenna Circuit Using a Bow-Tie Antenna for the Conversion of Microwave Power to DC Power, Microwave and Optical Tech. Lett. 6 (1993) 655–656.ADSCrossRefGoogle Scholar
  33. 94Shi.
    Shimanuki, Y., Adachi, S.: Theoretical and Experimental Study on Rectenna Array for Microwave Power Transmission (in Japanese), IEICE J67-B (1984) 1301–1308.Google Scholar
  34. 94Siv.
    Sivan, L.: Microwave tube transmitters — microwave technology series 9, Chapman & Hall, (1994) 183–188.Google Scholar
  35. 95Mat.
    Matsumoto, H.: Microwave Power Transmission from Space and Related Nonlinear Plasma Effects, Radio Science Bulletin, URSI 273 (June 1995) 11–35.Google Scholar
  36. 96Fuj.
    Fujino, Y., Fujita, M., Kaya, N., Kunimi, S., Ishii, M., Ogihata, N., Kusaka, N., Ida, S.: A Dual Polarization Microwave Power Transmission System for Microwave propelled Airship Experiment, Proc. of ISAP ’96 2 (1996) 393–396.Google Scholar
  37. 96Shi.
    Shinohara, N., Furukawa, M., Nakai, Y., Matsumoto, H.: Development of Rectenna for High Power Microwave Energy Transmission (in Japanese), IEICE B-II J79-B-II (1996) 346–348.Google Scholar
  38. 97Fuj.
    Fujino, Y., Fujita, M., Kaya, N., Kusaka, N.: An Experiment of Polarization Angle Characteristics of a Dual Polarization Rectenna (in Japanese), IEICE B-II J80-B-II (1997) 963–975.Google Scholar
  39. 97Man.
    Mankins, J.C.: A fresh look at concept of space solar power, Proc. of SPS ’97 in Montreal, 1997.Google Scholar
  40. 97McS.
    McSpadden, J.O., Fan, L., Chang, K.: A High Conversion Efficiency 5.8 GHz Rectenna, IEEE MTT-S Digest WE2B-6 (1997) 547–550.Google Scholar
  41. 97Miu.
    Miura, T.: Experimental and Theoretical Studies of Rectennas for Microwave Energy Transmission, Master Thesis, RASC, Kyoto University, 1997.Google Scholar
  42. 97Shi.
    Shinohara, N., Matsumoto, H.: A Study of Dependence of DC Output of Rectenna Array on the Method of Inter-connection of Its Array Element (in Japanese) T.IEE Japan 117-B (1997) 1254–1261.Google Scholar
  43. 98Shi.
    Shinohara, N., Matsumoto, H.: Experimental Study of Large Rectenna Array for Microwave Energy Transmission, IEEE Trans. Microwave Theory Tech. 46 (1998) 261–268.CrossRefADSGoogle Scholar
  44. 98Van.
    Vanke, V.A., Matsumoto, H., Shinohara, N., Kita, A.: Cyclotron Wave Converter of Microwaves into DC, IEICE Trans. on Electronics 81-C no.7 (1998) 1136–1142.Google Scholar
  45. 98Yam.
    Yamada, Y., Syahrial, Omiya, M., Itoh, K.: Characteristics of a Circular Microstrip Patch Antenna with Slits for Suppressing Re-radiation of Higher Harmonics (in Japanese), IEICE B-II J81-B-II (1998) 575–583.Google Scholar
  46. 99Gra.
    Granatstein, V.L., Parker, R.K., Armstrong, C.M.: Scanning the technology — vacuum electronics at the down of the twenty-first century, Proc. of IEEE 87 no. 5 (1999) 702–716.CrossRefGoogle Scholar
  47. 99Miu.
    Miura, T., Shinohara, N., Matsumoto, H.: Experimental Study of Rectenna Connection for Microwave Power Transmission (in Japanese), IEICE J82-B (1999) 1374–1383.Google Scholar
  48. 00Miu.
    Miura, T.: Study of Microwave Power Receiving System for wireless Power Transmission, Ph. D Thesis, Radio Science Center for Space and Atmosphere, Kyoto University, (2000) 73–74.Google Scholar
  49. 04Tes1.
    Tesla, N.: The transmission of electric energy without wires, The thirteenth Anniversary Number of the Electrical World and Engineer, March 5, 1904.Google Scholar
  50. 04Tes2.
    Tesla, N.: Experiments with Alternate Current of High Potential and High Frequency, New York: McGraw Pub. 1904.Google Scholar

Authors and Affiliations

  • H. Matsumoto

There are no affiliations available

Personalised recommendations