Advertisement

Families of Graphs Having Broadcasting and Gossiping Properties

  • Guillaume Fertin
  • André Raspaud
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1517)

Abstract

Broadcasting and gossiping are two problems of information dissemination described in a group of individuals connected by a communication network. In broadcasting (resp. gossiping), one node (resp. every node) has a piece of information and needs to transmit it to everyone else in the network. These communications patterns find their main applications in the field of interconnection networks for parallel architectures. In this paper, we are interested in Minimum Broadcast (resp. Gossip, Linear Gossip) Graphs (resp. Digraphs), that is graphs (resp. digraphs) that can achieve broadcasting (resp. gossiping, linear gossiping) in minimum time, and with a minimum number of edges. Many papers have investigated these subjects, but only a few general results on the size of graphs of order n are known. In this paper, we take the census of all the known non-isomorphic families of graphs (resp. digraphs) which are Minimum Broadcast Graphs, Minimum Gossip Graphs, Minimum Linear Gossip Graphs and/or Minimum Broadcast Digraphs, and we show that in most cases, the proposed minimum graphs that can be found in the literature are Knödel graphs [10,7].

Keywords

Broadcasting gossiping minimum broadcast graphs minimum gossip graphs Knödel graphs circulant graphs hypercubes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Rumeur, J.: Communications dans les réseaux d’interconnexion. Masson (1994)Google Scholar
  2. 2.
    Dinneen, M.J., Fellows, M.R., Faber, V.: Algebraic constructions of efficient broadcast networks. In: Mattson, H.F., Rao, T.R.N., Mora, T. (eds.) AAECC 1991. LNCS, vol. 539, pp. 152–158. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  3. 3.
    Farley, A.: Minimal broadcast networks. Networks 9, 313–332 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Farley, A., Hedetniemi, S., Mitchell, S., Proskurowski, A.: Minimum broadcast graphs. Discrete Mathematics 25, 189–193 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fertin, G.: On the structure of minimum broadcast digraphs. Technical Report RR-1173-97, Laboratoire Bordelais de Recherche en Informatique (1997) (Submitted)Google Scholar
  6. 6.
    Fertin, G.: A study of minimum gossip graphs. Technical Report RR-1172-97, Laboratoire Bordelais de Recherche en Informatique (1997) (Submitted)Google Scholar
  7. 7.
    Fraigniaud, P., Peters, J.G.: Minimum linear gossip graphs and maximal linear (δ, k)-gossip graphs. Technical Report CMPT TR 94-06, Simon Fraser University, Burnaby, B.C (1994)Google Scholar
  8. 8.
    Heydemann, M.-C.: Private communication (1998)Google Scholar
  9. 9.
    Khachatrian, L.H., Haroutunian, H.S.: Construction of new classes of minimal broadcast networks. In: Proc. Third International Colloquium on Coding Theory, pp. 69–77 (1990)Google Scholar
  10. 10.
    Knodel, W.: New gossips and telephones. Discrete Mathematics 13, 95 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Labahn, R.: Some minimum gossip graphs. Networks 23, 333–341 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Laborde, J.-M., Rao Hebbare, S.P.: Another characterization of hypercubes. Discrete Math. 39, 161–166 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Liestman, A.L., Peters, J.G.: Minimum broadcast digraphs. Discrete Applied Mathematics 37/38, 401–419 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Micheneau, C.: Graphes Récursifs Circulants: Structure et Communications. Communications Vagabondes et Simulation. PhD thesis, Université Bordeaux I (1996)Google Scholar
  15. 15.
    Mulder, M.: (0,λ)-graphs and n-cubes. Discrete Math. 28, 179–188 (1979)Google Scholar
  16. 16.
    Park, J.-H., Chwa, K.-Y.: On the construction of regular minimal broadcast digraphs. Theoretical Computer Science 124, 329–342 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Park, J.-H., Chwa, K.-Y.: Recursive circulant: a new topology for multicomputers networks (extended abstract). In: Proc. Int. Symp. Parallel Architectures, Algorithms and Networks ISPAN 1994, Kanazawa, Japan, pp. 73–80 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Guillaume Fertin
    • 1
  • André Raspaud
    • 1
  1. 1.LaBRI U.M.R. C.N.R.S. 5800Université Bordeaux ITalence Cedex

Personalised recommendations