Minimum Fill-In and Treewidth for Graphs Modularly Decomposable into Chordal Graphs

  • Elias Dahlhaus
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1517)


We show that a minimum fill-in ordering of a graph can be determined in linear time if it can be modularly decomposed into chordal graphs. These graphs are also called weak bipolarizable [12]. This generalizes results of [2]. We show that the treewidth of these graphs can be determined in O((n+m)log n) time.


Linear Time Chordal Graph Linear Time Algorithm Simplicial Vertex Minimum Elimination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnborg, S., Cornell, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Alg. Disc. Meth. 8, 277–284 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Babel, L.: Triangulating Graphs with Few P4s (submitted)Google Scholar
  3. 3.
    Broersma, H.J., Dahlhaus, E., Kloks, T.: A Linear Time Algorithm for Minimum Fill-in and Treewidth for Distance Hereditary Graphs (submitted)Google Scholar
  4. 4.
    Broersma, H.J., Dahlhaus, E., Kloks, T.: Algorithms for the Treewidth and Minimum Fill-in of HHD-Free Graphs. In: Möhring, R.H. (ed.) WG 1997. LNCS, vol. 1335, pp. 109–117. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  5. 5.
    Bunemann, P.: A Characterization of Rigid Circuit Graphs. Discrete Mathematics 9, 205–212 (1974)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cournier, A., Habib, M.: A new linear algorithm for modular decomposition. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 68–82. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  7. 7.
    Dahlhaus, E., Gustedt, J., McConnell, R.: Efficient and Practical Modular Decomposition. In: Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 26–35 (1997)Google Scholar
  8. 8.
    Farber, M.: Characterizations of Strongly Chordal Graphs. Discrete Mathematics 43, 173–189 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Frank, A.: Some Polynomial Time Algorithms for Certain Graphs and Hypergraphs. In: Proceedings of the 5th British Combinatorial Conference, Congressus Numerantium XV, Untilitas Mathematicae, Winnipeg, pp. 211–226 (1976)Google Scholar
  10. 10.
    Hoáng, C.T., Khouzam, N.: On Brittle Graphs. Journal of Graph Theory 12, 391–404 (1988)Google Scholar
  11. 11.
    McConnell, R.M., Spinrad, J.P.: Linear-time modular decomposition and efficient transitive orientation of undirected graphs. In: Sleator, D.D., et al. (eds.) Proceedings of the fifth annual ACM-SIAM Symposium on Discrete Algorithms, Society of Industrial and Applied Mathematics (SIAM), pp. 536–545 (1994)Google Scholar
  12. 12.
    Olariu, S.: Weak Bipolarizable Graphs. Discrete Mathematics 74, 159–171 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Rose, D.: Triangulated Graphs and the Elimination Process. Journal of Mathematical Analysis and Applications 32, 597–609 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Tarjan, R., Yannakakis, M.: Simple Linear Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hyper-graphs. SIAM Journal on Computing 13, 566–579 (1984); Addendum: SIAM Journal on Computing 14, 254-255 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Yannakakis, M.: Computing the Minimum Fill-in is NP-complete. SIAM Journal on Algebraic and Discrete Methods 2, 77–79 (1981)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Elias Dahlhaus
    • 1
    • 2
  1. 1.Department of Mathematics and Department of Computer ScienceUniversity of CologneGermany
  2. 2.Department of Computer ScienceUniversity of BonnGermany

Personalised recommendations