Domination and Steiner Tree Problems on Graphs with Few P4s

  • Luitpold Babel
  • Stephan Olariu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1517)


The contribution of this work is to show that the recently-proposed primeval and homogeneous decompositions of graphs can be used to solve efficiently various types of weighted domination and Steiner tree problems. Furthermore, we point out that these results imply linear-time algorithms for large classes of graphs which, in some local sense, contain only a small number of induced P4s.


Small Weight Decomposition Tree Domination Number Steiner Tree Problem Split Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Babel, L., Olariu, S.: On the structure of graphs with few P4s. Discrete Applied Mathematics 84, 1–13 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baumann, S.: A linear algorithm for the homogeneous decomposition of graphs. Report No. M-9615. Zentrum Mathematik, Technische Universität München (1996)Google Scholar
  3. 3.
    Corneil, D.G., Lerchs, H., Stewart Burlingham, L.: Complement reducible graphs. Discrete Applied Mathematics 3, 163–174 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Corneil, D.G., Perl, Y.: Clustering and domination in perfect graphs. Discrete Applied Mathematics 9, 27–39 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs. SIAM Journal on Computing 14, 926–934 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cournier, A., Habib, M.: A new linear time algorithm for modular decomposition. Trees in Algebra and Programming. LNCS, vol. 787, pp. 68–84. Springer, Heidleberg (1994)zbMATHGoogle Scholar
  7. 7.
    Dahlhaus, E., Gustedt, J., McConnell, R.: Efficient and practical modular decomposition. In: Eight Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, Louisiana , pp. 26–35 (1997)Google Scholar
  8. 8.
    Haynes, T., Hedetniemi, S., Slater, P. (eds.): Domination in Graphs: Advanced Topics. Marcel Dekker, New York (1998)zbMATHGoogle Scholar
  9. 9.
    Hedetniemi, S., Laskar, R.: Topics on Domination. Annals of Discrete Mathematics, vol. 48. North-Holland, Amsterdam (1991)Google Scholar
  10. 10.
    Jamison, B., Olariu, S.: P 4-reducible graphs, a class of uniquely tree representable graphs. Studies in Applied Mathematics 81, 79–87 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Jamison, B., Olariu, S.: On a unique tree representation for P4-extendible graphs. Discrete Applied Mathematics 34, 151–164 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Jamison, B., Olariu, S.: A unique tree representation for P 4-sparse graphs. Discrete Applied Mathematics 35, 115–129 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Jamison, B., Olariu, S.: p-components and the homogeneous decomposition of graphs. SIAM J. Discrete Mathematics 8, 448–463 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kratsch, D., Stewart, L.: Domination on cocomparability graphs. SIAM J. Discrete Mathematics 6, 400–417 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Laskar, R., Pfaff, J., Hedetniemi, S.M., Hedetniemi, S.T.: On the algorithmic complexity of total domination. SIAM J. Algebraic Discrete Methods 5, 420–425 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lin, R., Olariu, S.: A fast parallel algorithm to recognize P4-sparse graphs. Discrete Applied Mathematics 81, 191–215 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    McConnell, R., Spinrad, J.: Linear-time modular decomposition and efficient transitive orientation of comparability graphs. In: Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, Arlington, VA, pp. 536–545 (1994)Google Scholar
  18. 18.
    Möhring, R.H.: Algorithmic aspects of comparability graphs and interval graphs. In: Rival, I. (ed.) Graphs and Orders. Holland, Dordrecht (1985)Google Scholar
  19. 19.
    White, K., Farber, M., Pulleyblank, W.: Steiner trees, connected domination and strongly chordal graphs. Networks 15, 109–124 (1985)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Luitpold Babel
    • 1
  • Stephan Olariu
    • 2
  1. 1.Zentrum MathematikTechnische Universität MünchenMünchenGermany
  2. 2.Department of Computer ScienceOld Dominion UniversityNorfolkUSA

Personalised recommendations