Advertisement

Linear Algorithms for a k-partition Problem of Planar Graphs without Specifying Bases

  • Koichi Wada
  • Wei Chen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1517)

Abstract

This paper describes linear algorithms for partitioning a planar graph into k edge-disjoint connected subgraphs, each of which has a specified number of vertices and edges. If ℓ(≤ k) subgraphs contain the specified elements (called bases), we call this problem the k-partition problem with ℓ-base (denoted by k-PART-B(ℓ)). In this paper, we obtain the following results: (1)for any k ≥ 2, k-PART-B(1) can be solved in O(|E|) time for every 4-edge-connected planar graph G=(V,E), (2)3-PART-B(1) can be solved in O(|E|) time for every 2-edge-connected planar graph G=(V,E) and (3)5-PART-B(1) can be solved in O(|E|) time for every 3-edge-connected planar graph G=(V,E).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chiba, N., Nishizeki, T.: The Hamiltonian cycle problem is linear-time solvable for 4-connected planar graphs. Journal of Algorithms 10, 187–211 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Gabow, H.N., Westermann, H.H.: Forests frames and games: algorithms for ma-troid sums and applications. Algorithmica 7(5/6), 465–497 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Györi, E.: On division of connected subgraphs. In: Proc. 5th Hungarian Combinational Coll. Combinatorics 1976, Keszthely, pp. 485–494. North-Holland, Amsterdam (1978)Google Scholar
  4. 4.
    Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM J. Computing 2(3), 135–158 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Jou, L., Suzuki, H., Nishizeki, T.: A linear algorithm for finding a nonseparat-ing ear decomposition of triconnected planar graphs.Tech. Rep. of Information Processing Society of Japan, AL40-3 (1994)Google Scholar
  6. 6.
    Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmic 16(1), 4–32 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Lovász, L.: A homology theory for spanning trees of a graph. Acta math. Acad. Sci. Hunger 30, 241–251 (1977)Google Scholar
  8. 8.
    Nishizeki, T., Chiba, N.: Planar graphs: Theory and algorithms. Annals of Discrete Mathematics Monograph 32 (1988)Google Scholar
  9. 9.
    Wada, K., Chen, W.: Linear algorithms for a k-partition problem of planar graphs without specifying bases. Tech. Rep. of Wada-Lab. of ECE, NIT, TR98- 01 (1998)Google Scholar
  10. 10.
    Wada, K., Kawaguchi, K.: Efficient algorithms for tripartitioning triconnected graphs and 3-edge-connected graphs. In: van Leeuwen, J. (ed.) WG 1993. LNCS, vol. 790, pp. 132–143. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  11. 11.
    Wada, K., Takaki, A., Kawaguch, K.: Efficient algorithms for a mixed k-partition problem of graphs without specifying bases. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 319–330. Springer, Heidelberg (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Koichi Wada
    • 1
  • Wei Chen
    • 1
  1. 1.Nagoya Institute of TechnologyGokiso-cho, Syowa-kuJapan

Personalised recommendations