Efficient Embeddings of Grids into Grids

(Extended Abstract)
  • Markus Röttger
  • Ulf-Peter Schroeder
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1517)


In this paper we explore one-to-one embeddings of 2-dimensional grids into their ideal 2-dimensional grids. The presented results are optimal or considerably close to the optimum.

For embedding grids into grids of smaller aspect ratio, we prove a new lower bound on the dilation matching a known upper bound. The edge-congestion provided by our matrix-based construction differs from the here presented tight lower bound by at most one. For embedding grids into grids of larger aspect ratio, we establish five as an upper bound on the dilation and four as an upper bound on the edge-congestion, which are improvements of previous results.


Aspect Ratio Large Aspect Ratio Rightmost Column Small Aspect Ratio Isoperimetric Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahlswede, R., Bezrukov, S.L.: Edge Isoperimetric Theorems for Integer Point Arrays. Appl. Math. Lett. 8(2), 75–80 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aleliunas, R., Rosenberg, A.: On Embedding Rectangular Grids in Square Grids. IEEE Transact. on Computers C-31(9), 907–913 (1982)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bezrukov, S.L.: Isoperimetric Problems in Discrete Spaces. Extremal Problems for Finite Sets, Bolyai Soc. Math. Stud. 3, 59–91 (1994)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bezrukov, S.L., Chavez, J.D., Harper, L.H., Röttger, M., Schroeder, U.-P.: The Congestion of n-Cube Layout on a Rectangular Grid. Discrete Math. (to appear)Google Scholar
  5. 5.
    Chan, M.Y.: Embedding of Grids into Optimal Hypercubes. SIAM J. Computing 20(5), 834–864 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chvátalová, J.: Optimal Labelling of a Product of two Paths. Discrete Math. 11, 249–253 (1975)Google Scholar
  7. 7.
    Ellis, J.A.: Embedding Rectangular Grids into Square Grids. IEEE Transact. on Computers 40(1), 46–52 (1991)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ellis, J.A.: Embedding Grids into Grids: Techniques for Large Compression Ratios. Networks 27, 1–17 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Harper, L.H.: Optimal Numberings and Isoperimetric Problems on Graphs. J. Comb. Theory 1(3), 385–393 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Huang, S.-H., Liu, H.L., Verma, R.M.: A New Combinatorial Approach to Optimal Embeddings of Rectangles. Algorithmica 16, 161–180 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Huang, S.-H., Liu, H.L., Verma, R.M.: On Embedding Rectangular Meshes into Rectangular Meshes of Smaller Aspect Ratio. Inf. Proc. Let. 63, 123–129 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kosaraju, S.R., Atallah, M.J.: Optimal Simulations Between Mesh-Connected Arrays of Processors. J. Assoc. Comput. Mach. 35(3), 635–650 (1988)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Leiserson, C.L.: Area-Efficient Graph Layouts (for VLSI). In: Proc. 21st IEEE Symp. on Foundations on Computer Science, pp. 270–281 (1980)Google Scholar
  14. 14.
    Melhem, R.G., Hwang, G.-Y.: Embedding Rectangular Grids into Square Grids with Dilation Two. IEEE Transact. on Computers 39(12), 1446–1455 (1990)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Monien, B., Sudborough, I.H.: Embedding one Interconnection Network in Another. Computing Suppl. 7, 257–282 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Römke, T., Röttger, M., Schroeder, U.-P., Simon, J.: On Efficient Embeddings of Grids into Grids in PARIX. In: Haridi, S., Ali, K., Magnusson, P. (eds.) Euro-Par 1995. LNCS, vol. 966, pp. 181–204. Springer, Heidelberg (1995)Google Scholar
  17. 17.
    Röttger, M., Schroeder, U.-P.: Efficient Embeddings of Grids into Grids. Tech. Rep. tr-rsfb-97-054, University of Paderborn (1997)Google Scholar
  18. 18.
    Röttger, M., Schroeder, U.-P.: Embedding 2-Dimensional Grids into Optimal Hypercubes with Edge-Congestion 1 or 2. Parallel Processing Letters (to appear)Google Scholar
  19. 19.
    Sang, F.C., Sudborough, I.H.: Embedding Large Meshes into Small Ones. In: Proc. of the IEEE Symposium on Circuits and Systems, vol. 1, pp. 323–326 (1990)Google Scholar
  20. 20.
    Shen, X., Liang, W., Hu, Q.: On Embedding Between 2D Meshes of the Same Size. IEEE Transact. on Computers 46(8), 880–889 (1997)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Markus Röttger
    • 1
  • Ulf-Peter Schroeder
    • 1
  1. 1.Department of Computer ScienceUniversity of PaderbornPaderbornGermany

Personalised recommendations