Improved Compressions of Cube-Connected Cycles Networks

(Extended Abstract)
  • Ralf Klasing
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1517)


We present a new technique for the embedding of large cube-connected cycles networks (CCC) into smaller ones, a problem that arises when algorithms designed for an architecture of an ideal size are to be executed on an existing architecture of a fixed size. Using the new embedding strategy, we show that the (CCC) of dimension l can be embedded into the (CCC) of dimension k with dilation 1 and optimum load for any \(k,l \in {I \mkern-6mu N}\), k ≥ 8, such that \(\displaystyle \frac{5}{3} + c_k < \frac{l}{k} \leq 2\), \(\displaystyle c_k=\frac{4k+3}{3 \cdot 2^{\rule[-3pt]{0mm}{0mm}2/3 k}}\), thus improving known results. Our embedding technique also leads to improved dilation 1 embeddings in the case \(\displaystyle \frac{3}{2} < \frac{l}{k} \leq \frac{5}{3}+c_k\).


Parallel Algorithm Extend Abstract Systolic Array Optimum Load Allocation Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Annexstein, F., Baumslag, M., Rosenberg, A.L.: Group action graphs and parallel architectures. SIAM Journal on Computing 19, 544–569 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Berman, F., Snyder, L.: On mapping parallel algorithms into parallel architectures. Journal of Parallel and Distributed Computing 4, 439–458 (1987)CrossRefGoogle Scholar
  3. 3.
    Bhatt, S.N., Cai, J.-Y.: Taking random walks to grow trees in hypercubes. Journal of the ACM 40, 741–764 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bhatt, S.N., Chung, F.R.K., Leighton, F.T., Rosenberg, A.L.: Efficient embeddings of trees in hypercubes. SIAM Journal on Computing 21(1), 151–162 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bhatt, S.N., Chung, F.R.K., Hong, J.-W., Leighton, F.T., Obrenić, B., Rosenberg, A.L., Schwabe, E.J.: Optimal Emulations by Butterfly-Like Networks. Journal of the ACM 43, 293–330 (1996)Google Scholar
  6. 6.
    Bodlaender, H.L.: The classification of coverings of processor networks. Journal of Parallel and Distributed Computing 6, 166–182 (1989)CrossRefGoogle Scholar
  7. 7.
    Bodlaender, H.L., van Leeuwen, J.: Simulation of large networks on smaller networks. Information and Control 71, 143–180 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bokhari, S.H.: On the mapping problem. IEEE Transactions on Computers C-30, 207–214 (1981)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fang, M.-Y., Chen, W.-T.: Embedding large binary trees to hypercube multiprocessors. In: Proc. International Conference on Parallel Processing, pp. I714–I715 (1991)Google Scholar
  10. 10.
    Feldmann, R., Unger, W.: The Cube-Connected-Cycle is a subgraph of the Butterfly network. Parallel Processing Letters 2, 13–19 (1992)CrossRefGoogle Scholar
  11. 11.
    Fellows, M.R.: Encoding graphs in graphs. Ph.D. Dissertation, University of California at San Diego (1985)Google Scholar
  12. 12.
    Fishburn, J.P., Finkel, R.A.: Quotient networks. IEEE Transactions on Computers C-31, 288–295 (1982)CrossRefzbMATHGoogle Scholar
  13. 13.
    Gupta, A.K., Hambrusch, S.E.: Embedding large tree machines into small ones. In: Proc. 5th MIT Conference on Advanced Research in VLSI, pp. 179–198 (1988)Google Scholar
  14. 14.
    Heirich, A.: A scalable diffusion algorithm for dynamic mapping and load balancing on networks of arbitrary topology. International Journal on Foundations of Computer Science 8, 329–346 (1997)CrossRefzbMATHGoogle Scholar
  15. 15.
    Kim, S.J., Browne, J.C.: A general approach to mapping of parallel computations upon multiprocessor architectures. In: Proc. International Conference on Parallel Processing, vol. III, pp. 1–8 (1988)Google Scholar
  16. 16.
    Klasing, R., Lüling, R., Monien, B.: Compressing cube-connected cycles and butterfly networks. In: Proc. 2nd IEEE Symposium on Parallel and Distributed Processing (SPDP 1990), pp. 858–865 (1990); Networks (to appear)Google Scholar
  17. 17.
    Koch, R.R., Leighton, F.T., Maggs, B.M., Rao, S.B., Rosenberg, A.L., Schwabe, E.J.: Work-preserving emulations of fixed-connection networks. Journal of the ACM 44(1), 104–147 (1997)Google Scholar
  18. 18.
    Kosaraju, S.R., Atallah, M.J.: Optimal simulations between mesh-connected arrays of processors. Journal ofthe ACM 35, 635–650 (1988)MathSciNetGoogle Scholar
  19. 19.
    Leighton, F.T.: ntroduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann Publishers, San Mateo (1992)zbMATHGoogle Scholar
  20. 20.
    Leighton, F.T., Maggs, B.M., Rao, S.B.: Packet routing and job-shop scheduling in 0(congestion + dilation) steps. Combinatorica 14, 167–186 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Leighton, F.T., Newman, M.J., Ranade, A.G., Schwabe, E.J.: Dynamic tree embed-dings in butterflies and hypercubes. SIAM Journal on Computing 21, 639–654 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Miller, Z., Sudborough, I.H.: Compressing Grids into Small Hypercubes. Networks 24, 327–358 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Moldovan, D.I., Fortes, J.A.B.: Partitioning and mapping algorithms into fixed size systolic arrays. IEEE Transactions on Computers C-35, 1–12 (1986)CrossRefzbMATHGoogle Scholar
  24. 24.
    Monien, B.: Simulating binary trees on X-trees. In: Proc. 3rd ACM Symposium on Parallel Algorithms and Architectures (SPAA 1991), pp. 147–158 (1991)Google Scholar
  25. 25.
    Monien, B., Sudborough, I.H.: Embedding one Interconnection Network in Another. Computing Supplementum 7, 257–282 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Nelson, P.A., Snyder, L.: Programming solutions to the algorithm contraction problem. In: Proc. International Conference on Parallel Processing, pp. 258–261 (1986)Google Scholar
  27. 27.
    Peine, R.: Cayley-Graphen und Netzwerke. Master Thesis, Universität-GH Pader-born, Fachbereich 17 - Mathematik/Informatik, Germany (1990)Google Scholar
  28. 28.
    Preparata, F.P., Vuillemin, J.E.: The cube-connected cycles: a versatile network for parallel computation. Communications of the ACM 24, 300–309 (1981)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Rosenberg, A.L.: Graph embeddings 1988: Recent breakthroughs, new directions. In: Reif, J.H. (ed.) AWOC 1988. LNCS, vol. 319, pp. 160–169. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  30. 30.
    Sarkar, V.: Partitioning and Scheduling Parallel Programs for Multiprocessors. MIT Press, Cambridge (1989)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Ralf Klasing
    • 1
  1. 1.Department of Computer ScienceUniversity of WarwickCoventryEngland

Personalised recommendations