Advertisement

Internally Typed Second-Order Term Graphs

  • Wolfram Kahl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1517)

Abstract

We present a typing concept for second-order term graphsthat doesnot consider the types as an external add-on, but as an integral part of the term graph structure. This allows a homogeneous treatment of term-graph representations of many kinds of typing systems, including second-order λ-calculi and systems of dependent types. Applications can be found in interactive systems and as typed intermediate representation for example in compilers.

Keywords

Typing System Typing Element Type Part Variable Node Variable Identity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barendregt, H.P.: Lambda Calculi with Types. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 2, pp. 117–309. Oxford Univertity Press, New York (1992)Google Scholar
  2. 2.
    Brink, C., Kahl, W., Schmidt, G. (eds.): Relational Methods in Computer Science. Advances in Computing. Springer, Wien (1997) ISBN 3-211-82971-7zbMATHGoogle Scholar
  3. 3.
    Kahl, W.: Algebraische Termgraphersetzung mit gebundenen Variablen. Reihe Informatik. Herbert Utz Verlag, München, zugleich Dissertation an der Fakultät für Informatik, Universität der Bundeswehr München (1996) ISBN 3-931327-60-4Google Scholar
  4. 4.
    Wolfram Kahl. A Fibred Approach to Rewriting — How the Duality between Adding and Deleting Cooperates with the Difference between Matching and Rewriting. Tech. Rep. 9702 (May 1997), Fakultät für Informatik, Universität der Bundeswehr München. Google Scholar
  5. 5.
    Kahl, W.: Relational Treatment of Term Graphs With Bound Variables. Journal of the IGPL 6(2), 259–303 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kahl, W.: The Higher Object Programming System — User Manual for HOPS, Fakultät für Informatik, Universität der Bundeswehr München (February 1998), http://diogenes.informatik.unibwmuenchen.de:8080/kahl/HOPS/
  7. 7.
    Klop, J.W.: Combinatory Reduction Systems. Mathematical Centre Tracts 127, Centre for Mathematics and Computer Science, Amsterdam. PhD Thesis (1980)Google Scholar
  8. 8.
    Meijer, E., Fokkinga, M., Paterson, R.: Functional Programming with Bananas, Lenses, Envelopes and Barbed Wire. In: Hughes, J. (ed.) FPCA 1991. LNCS, vol. 523, pp. 124–144. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  9. 9.
    Schmidt, G., Ströhlein, T.: Relations and Graphs, Discrete Mathematics for Computer Scientists. In: EATCS-Monographs on Theoretical Computer Science. Springer, Berlin (1993)Google Scholar
  10. 10.
    Spivey, J.M.: The Z Notation: A Reference Manual. Prentice Hall International Series in Computer Science. Prentice Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  11. 11.
    Talcott, C.L.: A Theory of Binding Structures and Applications to Rewriting. Theoretical Computer Science 112, 68–81 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Wadsworth, C.P.: Semantics and Pragmatics ofthe Lambda Calculus. Ph.D. thesis, Oxford University (September 1971)Google Scholar
  13. 13.
    Zierer, H., Schmidt, G., Berghammer, R.: An Interactive Graphical Manipulation System for Higher Objects Based on Relational Algebra. In: Tinhofer, G., Schmidt, G. (eds.) WG 1986. LNCS, vol. 246, pp. 68–81. Springer, Heidelberg (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Wolfram Kahl
    • 1
  1. 1.Institut für Softwaretechnologie, Fakultät für InformatikUniversität der BundeswehrNeubiberg, MünchenGermany

Personalised recommendations