Skip to main content

Exogenous Factors May Differentially Influence the Selective Costs of mtDNA Mutations

  • Chapter
  • First Online:
Cellular and Molecular Basis of Mitochondrial Inheritance

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 231))

Abstract

In this review, we provide evidence to suggest that the cost of specific mtDNA mutations can be influenced by exogenous factors. We focus on macronutrient-mitochondrial DNA interactions as factors that may differentially influence the consequences of a change as mitochondria must be flexible in its utilization of dietary proteins, carbohydrates, and fats. To understand this fundamental dynamic, we briefly discuss the energy processing pathways in mitochondria. Next, we explore the mitochondrial functions that are initiated during energy deficiency or when cells encounter cellular stress. We consider the anterograde response (nuclear control of mitochondrial function) and the retrograde response (nuclear changes in response to mitochondrial signaling) and how this mito-nuclear crosstalk may be influenced by exogenous factors such as temperature and diet. Finally, we employ Complex I of the mitochondrial electron transport system as a case study and discuss the potential role of the dietary macronutrient ratio as a strong selective force that may shape the frequencies of mitotypes in populations and species. We conclude that this underexplored field likely has implications in the fundamental disciplines of evolutionary biology and quantitative genetics and the more biomedical fields of nutrigenomics and pharmacogenomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberts B, Johnson A, Lewis J, Walter P, Raff M, Roberts K (2002) Molecular biology of the cell, 4th edn: international student edition. Routledge, San Francisco

    Google Scholar 

  • Almeida LS, Nogueira C, Vilarinho L (2012) Nuclear-mitochondrial intergenomic communication disorders. In: Cseri J (ed) Skeletal muscle - from myogenesis to clinical relations. InTech, Croatia, pp 293–315

    Google Scholar 

  • Altmann SA (2009) Fallback foods, eclectic omnivores, and the packaging problem. Am J Phys Anthropol 140:615–629

    Article  PubMed  Google Scholar 

  • Andreyev AY, Kushnareva YE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc) 70:200–214

    Article  CAS  Google Scholar 

  • Argyropoulos G, Harper ME (2002) Uncoupling proteins and thermoregulation. J Appl Physiol (1985) 92:2187–2198

    Article  CAS  Google Scholar 

  • Ashton PS, Givnish TJ, Appanah S (1988) Staggered flowering in the Dipterocarpaceae: new insights into the floral induction and the evolution of mast fruiting in the aseasonal tropics. Am Nat 132:44–66

    Article  Google Scholar 

  • Atkins PW (1994) The 2nd law: energy, chaos, and form. Henry Holt, New York

    Google Scholar 

  • Aw WC, Correa CC, Clancy DJ, Ballard JWO (2011) Mitochondrial DNA variants in Drosophila melanogaster are expressed at the level of the organismal phenotype. Mitochondrion 11:756–763

    Article  CAS  PubMed  Google Scholar 

  • Aw WC, Garvin MR, Melvin RG, Ballard JWO (2017) Sex-specific influences of mtDNA mitotype and diet on mitochondrial functions and physiological traits in Drosophila melanogaster. PLoS One 12:e0187554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aw WC et al (2018) Genotype to phenotype: diet-by-mitochondrial DNA haplotype interactions drive metabolic flexibility and organismal fitness. PLoS Genet 14:e1007735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bachman NJ, Yang TL, Dasen JS, Ernst RE, Lomax MI (1996) Phylogenetic footprinting of the human cytochrome c oxidase subunit VB promoter. Arch Biochem Biophys 333:152–162

    Article  CAS  PubMed  Google Scholar 

  • Ballard JWO, James AC (2004) Differential fitness of mitochondrial DNA in perturbation cage studies correlates with global abundance and population history in Drosophila simulans. Proc R Soc Lond (Biol) 271:1197–1201

    Article  CAS  Google Scholar 

  • Ballard JWO, Kreitman M (1995) Is mitochondrial DNA a strictly neutral marker? Trends Ecol Evol 10:485–488

    Article  CAS  PubMed  Google Scholar 

  • Ballard JWO, Pichaud N (2014) Mitochondrial DNA: more than an evolutionary bystander. Funct Ecol 28:218–231

    Article  Google Scholar 

  • Ballard JWO, Youngson NA (2015) Can diet influence the selective advantage of mitochondrial DNA haplotypes? Biosci Rep 52:15–19

    Google Scholar 

  • Barreto FS, Burton RS (2013) Elevated oxidative damage is correlated with reduced fitness in interpopulation hybrids of a marine copepod. Proc Biol Sci 280:20131521

    PubMed  PubMed Central  Google Scholar 

  • Bar-Yaacov D, Hadjivasiliou Z, Levin L, Barshad G, Zarivach R, Bouskila A, Mishmar D (2015) Mitochondrial involvement in vertebrate speciation? The case of mito-nuclear genetic divergence in chameleons. Genome Biol Evol 7:3322–3336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhopal RS, Rafnsson SB (2009) Could mitochondrial efficiency explain the susceptibility to adiposity, metabolic syndrome, diabetes and cardiovascular diseases in South Asian populations? Int J Epidemiol 38:1072–1081

    Article  PubMed  Google Scholar 

  • Brand MD (2010) The sites and topology of mitochondrial superoxide production. Exp Gerontol 45:466–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brockman DK, van Schaik CP (2005) Seasonality in primates studies of living and extinct human and non-human primates. Cambridge University Press, New York

    Book  Google Scholar 

  • Burman JL et al (2014) A Drosophila model of mitochondrial disease caused by a complex I mutation that uncouples proton pumping from electron transfer. Dis Model Mech 7:1165–1174

    PubMed  PubMed Central  Google Scholar 

  • Burton RS, Barreto FS (2012) A disproportionate role for mtDNA in Dobzhansky-Muller incompatibilities? Mol Ecol 21:4942–4957

    Article  CAS  PubMed  Google Scholar 

  • Butow RA, Avadhani NG (2004) Mitochondrial signaling: the retrograde response. Mol Cell 14:1–15

    Article  CAS  PubMed  Google Scholar 

  • Calabrese C et al (2013) Respiratory complex I is essential to induce a Warburg profile in mitochondria-defective tumor cells. Cancer Metab 1:1–15

    Article  Google Scholar 

  • Chae S et al (2013) A systems approach for decoding mitochondrial retrograde signaling pathways. Sci Signal 6:rs4

    Article  PubMed  CAS  Google Scholar 

  • Chen S et al (2012) A cytoplasmic suppressor of a nuclear mutation affecting mitochondrial functions in Drosophila. Genetics 192:483–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou JY, Leu JY (2010) Speciation through cytonuclear incompatibility: insights from yeast and implications for higher eukaryotes. BioEssays 32:401–411

    Article  CAS  PubMed  Google Scholar 

  • Chou JY, Leu JY (2015) The Red Queen in mitochondria: cyto-nuclear co-evolution, hybrid breakdown and human disease. Front Genet 6:187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clancy DJ (2008) Variation in mitochondrial genotype has substantial lifespan effects which may be modulated by nuclear background. Aging Cell 7:795–804

    Article  CAS  PubMed  Google Scholar 

  • Cole MA et al (2011) A high fat diet increases mitochondrial fatty acid oxidation and uncoupling to decrease efficiency in rat heart. Basic Res Cardiol 106:447–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colombani J, Raisin S, Pantalacci S, Radimerski T, Montagne J, Leopold P (2003) A nutrient sensor mechanism controls Drosophila growth. Cell 114:739–749

    Article  CAS  PubMed  Google Scholar 

  • Connallon T, Camus MF, Morrow EH, Dowling DK (2018) Coadaptation of mitochondrial and nuclear genes, and the cost of mother’s curse. Proc Biol Sci 285: 20172257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Constantino PJ, Wright BW (2009) The importance of fallback foods in primate ecology and evolution. Am J Phys Anthropol 140:599–602

    Article  PubMed  Google Scholar 

  • Correa CC, Aw WC, Melvin RG, Pichaud N, Ballard JWO (2012) Mitochondrial DNA variants influence mitochondrial bioenergetics in Drosophila melanogaster. Mitochondrion 12:459–464

    Article  CAS  PubMed  Google Scholar 

  • Corton JM, Gillespie JG, Hardie DG (1994) Role of the AMP-activated protein kinase in the cellular stress response. Curr Biol 4:315–324

    Article  CAS  PubMed  Google Scholar 

  • DeVivo DC, Leckie MP, Ferrendelli JS, McDougal DB Jr (1978) Chronic ketosis and cerebral metabolism. Ann Neurol 3:331–337

    Article  CAS  PubMed  Google Scholar 

  • Ehinger JK et al (2016) Cell-permeable succinate prodrugs bypass mitochondrial complex I deficiency. Nat Commun 7:12317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eleff S, Kennaway NG, Buist NR, Darley-Usmar VM, Capaldi RA, Bank WJ, Chance B (1984) 31P NMR study of improvement in oxidative phosphorylation by vitamins K3 and C in a patient with a defect in electron transport at complex III in skeletal muscle. Proc Natl Acad Sci U S A 81:3529–3533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans MJ, Scarpulla RC (1990) NRF-1: a trans-activator of nuclear-encoded respiratory genes in animal cells. Genes Dev 4:1023–1034

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Ayala DJM, Chen S, Kemppainen E, O’Dell KMC, Jacobs HT (2010) Gene expression in a Drosophila model of mitochondrial disease. PLoS One 5:e8549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferreira FL, Ladriere L, Vincent JL, Malaisse WJ (2000) Prolongation of survival time by infusion of succinic acid dimethyl ester in a caecal ligation and perforation model of sepsis. Horm Metab Res 32:335–336

    Article  CAS  PubMed  Google Scholar 

  • Fujii N et al (2000) Exercise induces isoform-specific increase in 5’AMP-activated protein kinase activity in human skeletal muscle. Biochem Biophys Res Commun 273:1150–1155

    Article  CAS  PubMed  Google Scholar 

  • Fumagalli M et al (2015) Greenlandic Inuit show genetic signatures of diet and climate adaptation. Science 349:1343–1347

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L, Kroemer G (2014) Conceptual background and bioenergetic/mitochondrial aspects of oncometabolism, vol 542. Elsevier Science, Amsterdam

    Book  Google Scholar 

  • Garvin MR, Bielawski JP, Sazanov LA, Gharrett AJ (2015) Review and meta-analysis of natural selection in mitochondrial complex I in metazoans. J Zool Syst Evol Res 53:1–17

    Article  Google Scholar 

  • Geist V (1987) Bergmann’s rule is invalid. Can J Zool 65:1035–1038

    Article  Google Scholar 

  • Gemmell NJ, Metcalf VJ, Allendorf FW (2004) Mother’s curse: the effect of mtDNA on individual fitness and population viability. Trends Ecol Evol 19:238–244

    Article  PubMed  Google Scholar 

  • Gershoni M, Templeton AR, Mishmar D (2009) Mitochondrial bioenergetics as a major motive force of speciation. BioEssays 31:642–650

    Article  CAS  PubMed  Google Scholar 

  • Gomes AP et al (2013) Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155:1624–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorman GS et al (2015) Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol 77:753–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goto Y, Nonaka I, Horai S (1990) A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 348:651–653

    Article  CAS  PubMed  Google Scholar 

  • Guo R, Zong S, Wu M, Gu J, Yang M (2017) Architecture of human mitochondrial respiratory megacomplex I2III2IV2. Cell 170:1247–1257 e1212

    Article  CAS  PubMed  Google Scholar 

  • Halliday R (1989) Food, reproduction and longevity: is the extended lifespan of calorie-restricted animals an evolutionary adaptation? BioEssays 10:125–127

    Article  Google Scholar 

  • Havird JC, Sloan DB (2016) The roles of mutation, selection, and expression in determining relative rates of evolution in mitochondrial versus nuclear genomes. Mol Biol Evol 33:3042–3053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill GE (2016) Mitonuclear coevolution as the genesis of speciation and the mitochondrial DNA barcode gap. Ecol Evol 6:5831–5842

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill GE (2017) The mitonuclear compatibility species concept. Auk 134:393–409

    Article  Google Scholar 

  • Hirabara SM, Curi R, Maechler P (2010) Saturated fatty acid-induced insulin resistance is associated with mitochondrial dysfunction in skeletal muscle cells. J Cell Physiol 222:187–194

    Article  CAS  PubMed  Google Scholar 

  • Hunt J, Brooks R, Jennions MD, Smith MJ, Bentsen CL, Bussiere LF (2004) High-quality male field crickets invest heavily in sexual display but die young. Nature 432:1024–1027

    Article  CAS  PubMed  Google Scholar 

  • Ichiyama A (2011) Studies on a unique organelle localization of a liver enzyme, serine:pyruvate (or alanine:glyoxylate) aminotransferase. Proc Jpn Acad Ser B Phys Biol Sci 87:274–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Innocenti P, Morrow EH, Dowling DK (2011) Experimental evidence supports a sex-specific selective sieve in mitochondrial genome evolution. Science 332:845–848

    Article  CAS  PubMed  Google Scholar 

  • Jacinto E, Hall MN (2003) TOR signalling in bugs, brain and brawn. Nat Rev Mol Cell Biol 4:117–126

    Article  CAS  PubMed  Google Scholar 

  • Jacob HS, Evans EW (2000) Influence of carbohydrate foods and mating on longevity of the parasitoid Bathyplectes curculionis (Hymenoptera: Ichneumonidae). Environ Entomol 29:1088–1095

    Article  Google Scholar 

  • Jacobs HT, Fernández-Ayala DJM, Manjiry S, Kemppainen E, Toivonen JM, O’Dell KMC (2004) Mitochondrial disease in flies. Biochim Biophys Acta 1659:190–196

    Article  CAS  PubMed  Google Scholar 

  • James AC, Ballard JWO (2003) Mitochondrial genotype affects fitness in Drosophila simulans. Genetics 164:187–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayasena T et al (2015) Upregulation of glycolytic enzymes, mitochondrial dysfunction and increased cytotoxicity in glial cells treated with Alzheimer’s Disease plasma. PLoS One 10:e0116092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jazwinski SM (2013) The retrograde response: when mitochondrial quality control is not enough. Biochim Biophys Acta 1833:400–409

    Article  CAS  PubMed  Google Scholar 

  • Jheng HF et al (2012) Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle. Mol Cell Biol 32:309–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jornayvaz FR, Shulman GI (2010) Regulation of mitochondrial biogenesis. Essays Biochem 47:69–84

    Article  CAS  PubMed  Google Scholar 

  • Kivisild T et al (2006) The role of selection in the evolution of human mitochondrial genomes. Genetics 172:373–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knott CD (2005) Energetic responses to food availability in the great apes: implications for hominin evolution. I. Seasonality in primates: studies of living and extinct human and non-human primates. Cambridge University Press, New York

    Google Scholar 

  • Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11:325–337

    Article  CAS  PubMed  Google Scholar 

  • Lane N (2009) Biodiversity: on the origin of bar codes. Nature 462:272–274

    Article  CAS  PubMed  Google Scholar 

  • Lee HC, Wei YH (2000) Mitochondrial role in life and death of the cell. J Biomed Sci 7:2–15

    Article  CAS  PubMed  Google Scholar 

  • Lee HC, Yin PH, Chi CW, Wei YH (2002) Increase in mitochondrial mass in human fibroblasts under oxidative stress and during replicative cell senescence. J Biomed Sci 9:517–526

    Article  CAS  PubMed  Google Scholar 

  • Lee KP et al (2008) Lifespan and reproduction in Drosophila: new insights from nutritional geometry. Proc Natl Acad Sci U S A 105:2498–2503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S-J, Zhang J, Choi AMK, Kim HP (2013) Mitochondrial dysfunction induces formation of lipid droplets as a generalized response to stress. Oxidative Med Cell Longev 2013:327167

    Google Scholar 

  • Leigh SR (2004) Brain growth, life history, and cognition in primate and human evolution. Am J Primatol 62:139–164

    Article  CAS  PubMed  Google Scholar 

  • Leonard WR, Robertson ML (1992) Nutritional requirements and human evolution: a bioenergetics model. Am J Hum Biol 4:179–195

    Article  PubMed  Google Scholar 

  • Leonard WR, Robertson ML (1994) Evolutionary perspectives on human nutrition: the influence of brain and body size on diet and metabolism. Am J Hum Biol 6:77–88

    Article  PubMed  Google Scholar 

  • Leonard WR, Sorensen MV, Galloway VA, Spencer GJ, Mosher MJ, Osipova L, Spitsyn VA (2002) Climatic influences on basal metabolic rates among circumpolar populations. Am J Hum Biol 14:609–620

    Article  PubMed  Google Scholar 

  • Lionetti L et al (2014) High-lard and high-fish-oil diets differ in their effects on function and dynamic behaviour of rat hepatic mitochondria. PLoS One 9:e92753

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Y, Xu H, Yuan X, Rossiter SJ, Zhang S (2012) Multiple adaptive losses of alanine-glyoxylate aminotransferase mitochondrial targeting in fruit-eating bats. Mol Biol Evol 29:1507–1511

    Article  CAS  PubMed  Google Scholar 

  • McCommis KS, Finck BN (2015) Mitochondrial pyruvate transport: a historical perspective and future research directions. Biochem J 466:443–454

    Article  CAS  PubMed  Google Scholar 

  • McKenzie M, Lazarou M, Thorburn DR, Ryan MT (2007) Analysis of mitochondrial subunit assembly into respiratory chain complexes using Blue Native polyacrylamide gel electrophoresis. Anal Biochem 364:128–137

    Article  CAS  PubMed  Google Scholar 

  • Michelakis ED (2008) Mitochondrial medicine: a new era in medicine opens new windows and brings new challenges. Circulation 117:2431–2434

    Article  PubMed  Google Scholar 

  • Mihaylova MM, Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13:1016–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milot E, Moreau C, Gagnon A, Cohen AA, Brais B, Labuda D (2017) Mother’s curse neutralizes natural selection against a human genetic disease over three centuries. Nat Ecol Evol 1:1400–1406

    Article  PubMed  Google Scholar 

  • Mishmar D et al (2003) Natural selection shaped regional mtDNA variation in humans. Proc Natl Acad Sci U S A 100:171–176

    Article  CAS  PubMed  Google Scholar 

  • Mishmar D, Ruiz-Pesini E, Mondragon-Palomino M, Procaccio V, Gaut B, Wallace DC (2006) Adaptive selection of mitochondrial complex I subunits during primate radiation. Gene 378:11–18

    Article  CAS  PubMed  Google Scholar 

  • Morris G, Berk M (2015) The many roads to mitochondrial dysfunction in neuroimmune and neuropsychiatric disorders. BMC Med 13:1–24

    Article  CAS  Google Scholar 

  • Nelson DL, Lehninger AL, Cox MM (2008) Lehninger principles of biochemistry. W. H. Freeman, New York

    Google Scholar 

  • Noguchi T (1987) Amino acid metabolism in animal peroxisomes. In: Fahimi HD, Sies H (eds) Peroxisomes in biology and medicine. Springer, Berlin, pp 234–243

    Chapter  Google Scholar 

  • O’Donnell J, Ahuja GD (2005) Drug injury: liability, analysis, and prevention. Lawyers & Judges, Tucson

    Google Scholar 

  • Osada N, Akashi H (2012) Mitochondrial-nuclear interactions and accelerated compensatory evolution: evidence from the primate cytochrome C oxidase complex. Mol Biol Evol 29:337–346

    Article  CAS  PubMed  Google Scholar 

  • Passos JF, von Zglinicki T, Kirkwood TB (2007) Mitochondria and ageing: winning and losing in the numbers game. BioEssays 29:908–917

    Article  CAS  PubMed  Google Scholar 

  • Pichaud N, Messmer M, Correa CC, Ballard JWO (2013) Diet influences the intake target and mitochondrial functions of Drosophila melanogaster males. Mitochondrion 13:817–822

    Article  CAS  PubMed  Google Scholar 

  • Ponce de Leon MS et al (2008) Neanderthal brain size at birth provides insights into the evolution of human life history. Proc Natl Acad Sci U S A 105:13764–13768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Protti A, Singer M (2006) Bench-to-bedside review: potential strategies to protect or reverse mitochondrial dysfunction in sepsis-induced organ failure. Crit Care 10:228

    Article  PubMed  PubMed Central  Google Scholar 

  • Quiros PM, Mottis A, Auwerx J (2016) Mitonuclear communication in homeostasis and stress. Nat Rev Mol Cell Biol 17:213–226

    Article  CAS  PubMed  Google Scholar 

  • Rand DM, Haney RA, Fry AJ (2004) Cytonuclear coevolution: the genomics of cooperation. Trends Ecol Evol 19:645–653

    Article  PubMed  Google Scholar 

  • Rho JM (2017) How does the ketogenic diet induce anti-seizure effects? Neurosci Lett 637:4–10

    Article  CAS  PubMed  Google Scholar 

  • Ristow M, Schmeisser K (2014) Mitohormesis: promoting health and lifespan by increased levels of reactive oxygen species (ROS). Dose-Response 12:288–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robergs RA, Ghiasvand F, Parker D (2004) Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 287:R502–R516

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Pesini E, Mishmar D, Brandon M, Procaccio V, Wallace DC (2004) Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 303:223–226

    Article  CAS  PubMed  Google Scholar 

  • Rutter J, Reick M, Wu LC, McKnight SL (2001) Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293:510–514

    Article  CAS  PubMed  Google Scholar 

  • Sagan L (1967) On the origin of mitosing cells. J Theor Biol 14:255–274

    Article  CAS  PubMed  Google Scholar 

  • Scarpulla RC (2008) Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator. Ann N Y Acad Sci 1147:321–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schon EA, Manfredi G (2003) Neuronal degeneration and mitochondrial dysfunction. J Clin Invest 111:303–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuelke M et al (1999) Mutant NDUFV1 subunit of mitochondrial complex I causes leukodystrophy and myoclonic epilepsy. Nat Genet 21:260–261

    Article  CAS  PubMed  Google Scholar 

  • Selvi Rani D, Vanniarajan A, Gupta NJ, Chakravarty B, Singh L, Thangaraj K (2006) A novel missense mutation C11994T in the mitochondrial ND4 gene as a cause of low sperm motility in the Indian subcontinent. Fertil Steril 86:1783–1785

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL et al (2001) ‘The metabolism of tumours’: 70 years later. Novartis Found Symp 240:251–260 Discussion 260–254

    CAS  PubMed  Google Scholar 

  • Sena LA, Chandel NS (2012) Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48:158–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senyilmaz D et al (2015) Regulation of mitochondrial morphology and function by stearoylation of TFR1. Nature 525:124–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273:59–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart JB, Chinnery PF (2015) The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat Rev Genet 16:530–542

    Article  CAS  PubMed  Google Scholar 

  • Stringer CB, Andrews P (1988) Genetic and fossil evidence for the origin of modern humans. Science 239:1263–1268

    Article  CAS  PubMed  Google Scholar 

  • Sugioka K, Nakano M, Totsune-Nakano H, Minakami H, Tero-Kubota S, Ikegami Y (1988) Mechanism of O2-generation in reduction and oxidation cycle of ubiquinones in a model of mitochondrial electron transport systems. Biochim Biophys Acta 936:377–385

    Article  CAS  PubMed  Google Scholar 

  • Suliman HB, Carraway MS, Welty-Wolf KE, Whorton AR, Piantadosi CA (2003) Lipopolysaccharide stimulates mitochondrial biogenesis via activation of nuclear respiratory factor-1. J Biol Chem 278:41510–41518

    Article  CAS  PubMed  Google Scholar 

  • Takayama T et al (2003) Control of oxalate formation from L-hydroxyproline in liver mitochondria. J Am Soc Nephrol 14:939–946

    Article  CAS  PubMed  Google Scholar 

  • Tapia PC (2006) Sublethal mitochondrial stress with an attendant stoichiometric augmentation of reactive oxygen species may precipitate many of the beneficial alterations in cellular physiology produced by caloric restriction, intermittent fasting, exercise and dietary phytonutrients: “Mitohormesis” for health and vitality. Med Hypotheses 66:832–843

    Article  CAS  PubMed  Google Scholar 

  • Thiriet M (2011) Cell and tissue organization in the circulatory and ventilatory systems. Springer, New York

    Book  Google Scholar 

  • Towarnicki SG, Ballard JWO (2017) Drosophila mitotypes determine developmental time in a diet and temperature dependent manner. J Insect Physiol 100:133–139

    Article  CAS  PubMed  Google Scholar 

  • Trivers R (2002) Natural selection and social theory: selected papers of Robert Trivers. Oxford University Press, New York

    Google Scholar 

  • Turrens JF, Alexandre A, Lehninger AL (1985) Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys 237:408–414

    Article  CAS  PubMed  Google Scholar 

  • Ulijaszek SJ (2002) Comparative energetics of primate fetal growth. Am J Hum Biol 14:603–608

    Article  PubMed  Google Scholar 

  • Vafai SB, Mootha VK (2012) Mitochondrial disorders as windows into an ancient organelle. Nature 491:374–383

    Article  CAS  PubMed  Google Scholar 

  • van de Weijer T et al (2013) Relationships between mitochondrial function and metabolic flexibility in Type 2 Diabetes mellitus. PLoS One 8:e51648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Sluis EO et al (2015) Parallel structural evolution of mitochondrial ribosomes and OXPHOS complexes. Genome Biol Evol 7:1235–1251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Visser MD, Jongejans E, van Breugel M, Zuidema PA, Chen Y-Y, Kassim AR, de Kroon H (2011) Strict mast fruiting for a tropical dipterocarp tree: a demographic cost–benefit analysis of delayed reproduction and seed predation. J Ecol 99:1033–1044

    Article  Google Scholar 

  • Wallace DC (2009) Mitochondria, bioenergetics, and the epigenome in eukaryotic and human evolution. Cold Spring Harb Symp Quant Biol 74:383–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace DC (2010) Colloquium paper: bioenergetics, the origins of complexity, and the ascent of man. Proc Natl Acad Sci U S A 107(Suppl 2):8947–8953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warburg O, Posener K, Negelein E (1924) Uber den stoffwechsel der carcinomzelle. Biochem Z 152:309–344

    CAS  Google Scholar 

  • Westermann B (2012) Bioenergetic role of mitochondrial fusion and fission. Biochim Biophys Acta 1817:1833–1838

    Article  CAS  PubMed  Google Scholar 

  • Whelan SP, Zuckerbraun BS (2013) Mitochondrial signaling: forwards, backwards, and in between. Oxidative Med Cell Longev 2013:10

    Article  CAS  Google Scholar 

  • Wich SA, van Schaik CP (2000) The impact of El Nino on mast fruiting in Sumatra and elsewhere in Malesia. J Trop Ecol 16:563–577

    Article  Google Scholar 

  • Wojtaszewski JF, Nielsen P, Hansen BF, Richter EA, Kiens B (2000) Isoform-specific and exercise intensity-dependent activation of 5′-AMP-activated protein kinase in human skeletal muscle. J Physiol 528(Pt 1):221–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu M, Gu J, Guo R, Huang Y, Yang M (2016) Structure of mammalian respiratory rupercomplex I1III2IV1. Cell 167:1598–1609 e1510

    Article  CAS  PubMed  Google Scholar 

  • Yamagiwa J, Basabose AK (2009) Fallback foods and dietary partitioning among Pan and Gorilla. Am J Phys Anthropol 140:739–750

    Article  PubMed  Google Scholar 

  • Ying W (2008) NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal 10:179–206

    Article  CAS  PubMed  Google Scholar 

  • Yoboue ED, Devin A (2012) Reactive oxygen species-mediated control of mitochondrial biogenesis. Int J Cell Biol 2012:403870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Youngson NA, Morris MJ, Ballard JWO (2017) The mechanisms mediating the antiepileptic effects of the ketogenic diet, and potential opportunities for improvement with metabolism-altering drugs. Seizure 52:15–19

    Article  PubMed  Google Scholar 

  • Zera AJ, Harshman LG (2001) The physiology of life history trade-offs in animals. Annu Rev Ecol Syst 32:95–126

    Article  Google Scholar 

  • Zhang Y, Jiang L, Hu W, Zheng Q, Xiang W (2011) Mitochondrial dysfunction during in vitro hepatocyte steatosis is reversed by omega-3 fatty acid-induced up-regulation of mitofusin 2. Metabolism 60:767–775

    Article  CAS  PubMed  Google Scholar 

  • Ziegler M (2000) New functions of a long-known molecule. Emerging roles of NAD in cellular signaling. Eur J Biochem 267:1550–1564

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Neil Youngson and Priscilla Gunadi for the comments. The review was supported by the Australian Research Council (ARC) Discovery Project 160102575.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. William O. Ballard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aw, W.C., Garvin, M.R., Ballard, J.W.O. (2019). Exogenous Factors May Differentially Influence the Selective Costs of mtDNA Mutations. In: Sutovsky, P. (eds) Cellular and Molecular Basis of Mitochondrial Inheritance. Advances in Anatomy, Embryology and Cell Biology, vol 231. Springer, Cham. https://doi.org/10.1007/102_2018_2

Download citation

  • DOI: https://doi.org/10.1007/102_2018_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04569-2

  • Online ISBN: 978-3-030-04570-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics