Advertisement

2.1.7 The Karlsruhe-Helsinki analyses KH 78 and KH 80

2.1 Methods of partial wave and amplitude analyses
  • G. Höhler
Part of the Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms book series

Abstract

Summary

This document is part of Subvolume B2 ‘Pion Nucleon Scattering. Part 2: Methods and Results of Phenomenological Analyses’ of Volume 9 ‘Elastic and Charge Exchange Scattering of Elementary Particles’ of Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms.

Keywords

Elastic and Charge Exchange Scattering of Elementary Particles Pion Nucleon Scattering. Part 2: Methods and Results of Phenomenological Analyses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

3.1 Books, reviews and lecture notes

  1. 72LENGELS.
    APPLICATION OF SUBTRACTED FIXED-T DISPERSION RELATIONS TO PI N SCATTERING J. ENGELS:NUCL.PHYS.B36(1972)73 2.1.7; 2.4.7; 2.5.1CrossRefADSGoogle Scholar
  2. 72LMCCLURE.
    DISPERSION RELATION CALCULATION OF THE PI N AMPLITUDE A' J.A. MC CLURE, L.E. PITTS:PHYS.REV.D5(1972)109 2.1.16ADSGoogle Scholar
  3. 72LNIELSEN-1.
    PION-NUCLEON PARTIAL WAVE AMPLITUDES IN THE LOW ENERGY REGION H. NIELSEN, G.C. OADES:NUCL.PHYS.B49(1972)573 2.1.7; 2.4.7CrossRefADSGoogle Scholar
  4. 74LARGYRES.
    THE VECTOR AND TENSOR EXCHANGE CONTRIBUTIONS TO PION-NUCLEON SCATTERING E.N. ARGYRES, A.P. CONTOGOURIS, S. RAY, M. SVEC:ANN.OF PHYS.85(1974)283 2.1.16; 2.6.5CrossRefADSGoogle Scholar
  5. 73LDEVENISH.
    TWO-COMPONENT DUALITY AND FIXED-T DISPERSION RELATIONS FOR PI N CHARGE-EXCHANGE R.C.E. DEVENISH, B.R. MARTIN:PHYS.REV.D8(1973)3126 2.6.5ADSGoogle Scholar
  6. 74LHECHT.
    PI N SCATTERING AMPLITUDES AT 1.5-14 GEV AND SMALL MOMENTUM TRANSFER H. HECHT, P. KROLL, H.P. JAKOB:NUCL.PHYS.B71(1974)1 2.1.16CrossRefADSGoogle Scholar
  7. 75RCONTOGOURIS.
    AMPLITUDE ANALYSES FROM INCOMPLETE DATA USING FIXED-T DISPERSION RELATIONS A.P. CONTOGOURIS:ORSAY REPORT LPTPE 75/18(1975) 2.1.16Google Scholar
  8. 77LAUGENSTEIN.
    PION-NUCLEON SCATTERING DATA K.H. AUGENSTEIN, G. HOEHLER, E. PIETARINEN, H.M. STAUDENMAIER:PHYSICS DATA 1–2(1977) AND MAGNETIC TAPE 2.1.7Google Scholar
  9. 76LPIETARINEN-1.
    FIXED MOMENTUM TRANSFER ANALYSIS OF PION-NUCLEON SCATTERING E. PIETARINEN:NUCL.PHYS.B107(1976)21 A.6.3; 2.1.3; 2.1.7CrossRefADSGoogle Scholar
  10. 69LCUTKOSKY.
    THEORY OF REPRESENTATION OF SCATTERING DATA BY ANALYTIC FUNCTIONS R.E. CUTKOSKY:ANN.PHYS.54(1969)350 2.1.9; A.6.3; 2.6.7CrossRefADSMathSciNetGoogle Scholar
  11. 73LPIETARINEN.
    APPROXIMATION OF SCATTERING AMPLITUDES USING ANALYTICITY AND EXPERIMENTAL DATA E. PIETARINEN:NUCL.PHYS.B55(1973)541 2.1.7; A.6.3CrossRefADSGoogle Scholar
  12. 64LFLETCHER.
    R. FLETCHER, C.M. REEVES:COMPUTER JOURN.7(1964)151 2.1.7Google Scholar
  13. 78LKOCH.
    ANWENDUNG VON DISPERSIONSMETHODEN ZUR ANALYSE DER PION-NUKLEON STREUUNG R. KOCH:THESIS,UNIVERSITY OF KARLSRUHE,1978 2.1.7; 2.4.2; 2.4.7Google Scholar
  14. 78LPIETARINEN-2.
    DETERMINATION OF BACKWARD PION-NUCLEON SCATTERING AMPLITUDES E. PIETARINEN:HELSINKI PREPRINT HU-TFT-78-13 2.6.7; 2.1.7Google Scholar
  15. 71LPRESNAJDER.
    MERGING OF ANALYTICITY AND STATISTICS IN EXTRAPOLATIONS AND REPRESENTATIONS OF DATA P. PRESNAJDER, J. PISUT:NUOVO CIM.3A(1971)603 2.4.7; A.6.3; 2.6.7CrossRefADSMathSciNetGoogle Scholar
  16. 71LROSS.
    DATA REPRESENTATION AND MODIFIED DISPERSION RELATIONS G.G. ROSS:NUCL.PHYS.B31(1971)113 2.4.5; A.6.4CrossRefADSGoogle Scholar
  17. 73LCUTKOSKY.
    CONSTRUCTION OF REPRODUCTING KERNELS FOR ANALYTIC HILBERT SPACES R.E. CUTKOSKY:J.MATH.PHYS.14(1973)1231 2.1.9; A.6.3CrossRefzbMATHADSMathSciNetGoogle Scholar
  18. 73LPIETARINEN.
    APPROXIMATION OF SCATTERING AMPLITUDES USING ANALYTICITY AND EXPERIMENTAL DATA E. PIETARINEN:NUCL.PHYS.B55(1973)541 2.1.7; A.6.3CrossRefADSGoogle Scholar
  19. 64LFLETCHER.
    R. FLETCHER, C.M. REEVES:COMPUTER JOURN.7(1964)151 2.1.7Google Scholar
  20. 76LKAISER.
    HIGHER SPIN EXCHANGE IN PI PI → NUCLEON ANTINUCLEON SCATTERING F. KAISER, E. BORIE, G. HOEHLER:PHYS.LETT.62B (1976)441 2.4.2; A.6.7; 2.4.6; 2.6.7ADSGoogle Scholar
  21. 77LBORIE.
    A STUDY OF PI PI → N ANTI N PARTIAL-WAVE AMPLITUDES USING INTERIOR DISPERSION RELATIONS E. BORIE, F. KAISER:NUCL.PHYS.B126(1977)173 A.6.7; 2.4.2; 2.4.6; 2.6.7CrossRefADSGoogle Scholar
  22. 78LKAISER.
    EVALUATION OF PI N INTERIOR DISPERSION RELATIONS WITH KH 78 PHASE SHIFTS F. KAISER:KARLSRUHE PREPRINT TKP 78-23,1978 2.4.2Google Scholar
  23. 80LHUTT.
    EVALUATION OF PI N PARTIAL WAVE DISPERSION RELATIONS USING NEW PHASE SHIFT RESULTS M. HUTT, R. KOCH:KARLSRUHE PREPRINT TKP 80-25(1980) A.7.1Google Scholar
  24. 81LHUTT.
    IS THERE EVIDENCE FOR STRONG VAN DER WAALS FORCES IN PI N SCATTERING? M. HUTT, R. KOCH:PHYS.LETT.105B(1981)227 A.7.1ADSGoogle Scholar
  25. 78LSABBA-STEFANESCU.
    EINE UNTERSUCHUNG DER NULLSTELLEN-TRAJEKTORIEN DER PION NUCLEON STREUAMPLITUDEN I. SABBA-STEFANESCU:THESIS,UNIVERSITY OF KARLSRUHE(1978) 2.4.3Google Scholar
  26. 77LTROMBORG.
    ELECTROMAGNETIC CORRECTIONS TO PI N SCATTERING B. TROMBORG, S. WALDENSTROM, I. OVERBO:PHYS.REV.D15(1977)725 A.2.3; 2.1.17ADSGoogle Scholar
  27. 80LKOCH-2.
    THE KARLSRUHE-HELSINKI PI N ELASTIC PARTIAL WAVE ANALYSIS R. KOCH IN "BARYON 1980", PROC. 4TH INT.CONF.ON BARYON RESONANCES IN TORONTO;ED.N. ISGUR 2.1.7; 2.4.1Google Scholar
  28. 80RKOCH.
    THE PRESENT STATUS OF PION-NUCLEON PHASE SHIFT ANALYSIS R. KOCH IN"LOW AND INTERMEDIATE ENERGY KAON-NUCLEON PHYSICS"(ROME 1980),P.1;EDS.E. FERRARI, G. VIOLINI; REIDEL(1980) 2.1.7; 2.4.1; 2.6.3Google Scholar
  29. 78LKOCH.
    ANWENDUNG VON DISPERSIONSMETHODEN ZUR ANALYSE DER PION-NUKLEON STREUUNG R. KOCH:THESIS,UNIVERSITY OF KARLSRUHE,1978 2.1.7; 2.4.2; 2.4.7Google Scholar
  30. 80LKOCH-2.
    THE KARLSRUHE-HELSINKI PI N ELASTIC PARTIAL WAVE ANALYSIS R. KOCH IN "BARYON 1980", PROC. 4TH INT.CONF.ON BARYON RESONANCES IN TORONTO;ED.N. ISGUR 2.1.7; 2.4.1Google Scholar
  31. 81LKOCH.
    CONSISTENCY OF PION-NUCLEON PARTIAL WAVE RELATIONS WITH THE FORWARD DISPERSION RELATION FOR THE T-DERIVATIVE OF THE AMPLITUDE C PLUS R. KOCH, U. MANNING:KARLSRUHE PREPRINT TKP 81-14 2.4.7; 2.6.2; A.6.5Google Scholar
  32. 81LHIROSHIGE.
    AN APPROXIMATE PHASE SHIFT ANALYSIS OF PI N SCATTERING N. HIROSHIGE, H. KAMO, W. WATARI:PROGR.THEOR.PHYS.65(1981)1763 2.1.7CrossRefADSGoogle Scholar
  33. 82LHIROSHIGE.
    ON THE POLARIZATION OF PION-NUCLEON SCATTERING AT LARGE ANGLES N. HIROSHIGE, W. WATARI:OSAKA PREPRINT(1982) 2.1.7Google Scholar
  34. 82LSABBA-STEFANESCU-1.
    DETERMINATION OF PI N PHASE SHIFTS FROM ISOSPIN CONSTRAINTS AND FIXED T ANALYTICITY I. SABBA-STEFANESCU:J.MATH.PHYS.23(1982)1190 AND ACTA PHYS.AUSTR.SUPPL. XXIII(1981)695 2.1.3; 2.1.7; 2.4.3CrossRefADSMathSciNetGoogle Scholar
  35. 82LSABBA-STEFANESCU-2.
    CONSTRUCTION OF AMPLITUDES WITH MANDELSTAM ANALYTICITY FROM OBSERVABLE QUANTITIES I. SABBA-STEFANESCU:UNIVERSITY OF KARLSRUHE PREPRINT TKP 82-13 2.1.3; 2.1.7Google Scholar
  36. 81LSABBA-STEFANESCU.
    ZERO TRAJECTORIES AND ANALYTICITY IN PION-PROTON SCATTERING I. SABBA-STEFANESCU:KARLSRUHE PREPRINT TKP 81-10 2.1.3; 2.4.3Google Scholar
  37. 78LABAEV.
    PHASE SHIFT ANALYSIS OF PION-NUCLEON SCATTERING V.V. ABAEV, S.P. KRUGLOV, Y.A. MALOV:Leningrad Report No. 438(1978) 2.1.8Google Scholar
  38. 76LAYED.
    ANALYSE EN DEPHASAGES DE LA DIFFUSION ELASTIQUE PION-NUCLEON R. AYED;CEA-N-1291, SACLAY, AND THESIS, UNIV. OF PARIS(1976) 2.1.5Google Scholar
  39. 73LCARTER-1.
    PI P PHASE SHIFTS FROM 88 TO 310 MEV J.R. CARTER, D.V. BUGG, A.A. CARTER:NUCL.PHYS.B58(1973)378 2.1.6; 2.4.7CrossRefADSGoogle Scholar
  40. 82LALDER.
    MEASUREMENT OF THE POLARIZATION PARAMETER IN PI MINUS P ELASTIC AND CHARGE-EXCHANGE SCATTERING BETWEEN 98 AND 310 MEV J.C. ALDER ET AL.:SIN PREPRINT;PHYS.REV.IN PRINT 2.1.8Google Scholar
  41. 73LCARTER-1.
    PI P PHASE SHIFTS FROM 88 TO 310 MEV J.R. CARTER, D.V. BUGG, A.A. CARTER:NUCL.PHYS.B58(1973)378 2.1.6; 2.4.7CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  1983

Authors and Affiliations

  • G. Höhler

There are no affiliations available

Personalised recommendations