Advertisement

2.4.1.2 Parametrizations of resonances

2.4.1 Parameters of pion-nucleon resonances
  • G. Höhler
Part of the Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms book series

Abstract

Summary

This document is part of Subvolume B2 ‘Pion Nucleon Scattering. Part 2: Methods and Results of Phenomenological Analyses’ of Volume 9 ‘Elastic and Charge Exchange Scattering of Elementary Particles’ of Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms.

Keywords

Elastic and Charge Exchange Scattering of Elementary Particles Pion Nucleon Scattering. Part 2: Methods and Results of Phenomenological Analyses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

3.1 Books, reviews and lecture notes

  1. 61LBALL.
    POSSIBLE EXPLANATION OF HIGHER PI N RESONANCES IN TERMS OF INELASTIC THRESHOLDS J.S. BALL, W.R. FRAZER:PHYS.REV.LETT.7(1961)204 2.4.1CrossRefADSGoogle Scholar
  2. 61LFRAZER.
    APPLICATIONS OF CONFORMAL MAPPING TO THE PHENOMENOLOGICAL REPRESENTATION OF SCATTERING AMPLITUDES W.R. FRAZER:PHYS.REV.123(1961)2180 2.6.7CrossRefADSMathSciNetGoogle Scholar
  3. 64RGOLDBERGER-WATSON.
    COLLISION THEORY M.L. GOLDBERGER, K.M. WATSON;WILEY(1964) A.2; A.3; A.6.3; 2.4.1Google Scholar
  4. 79RBOEHM.
    QUANTUM MECHANICS A. BOEHM;SPRINGER(1979) 2.4.1Google Scholar
  5. 62RAMATI-FUBINI.
    DISPERSION RELATION METHOD IN STRONG INTERACTIONS D. AMATI, S. FUBINI:ANN.REV.NUCL.SCI.12(1962)359 A.6CrossRefADSMathSciNetGoogle Scholar
  6. 63RFULTON.
    RESONANCES IN STRONG INTERACTION PHYSICS TH. FULTON IN"ELEMENTARY PARTICLE PHYSICS AND FIELD THEORY",P.1;ED.K.W. FORD;BENJAMIN(1963) 2.4.1Google Scholar
  7. 80RBRICMAN.
    REVIEW OF PARTICLE PROPERTIES C. BRICMAN ET AL.CERN REPRINT=R.L. KELLY ET AL.:REV.MOD. 2.4.1Google Scholar
  8. 76LCUTKOSKY.
    PION-NUCLEON PARTIAL WAVE ANALYSIS FROM 0.8 TO 2.0 GEV R.E. CUTKOSKY ET AL. IN "PROC.TOPICAL CONF.ON BARYON RESONANCES" (OXFORD),P.49;RUTHERFORD LAB.(1976) 2.1.9; 2.4.1Google Scholar
  9. 73LLICHTENBERG.
    MASS AND WIDTH OF A BROAD RESONANCE D.B. LICHTENBERG:LETT.NUOVO CIM.7(1973)727 2.4.1; 2.1.10CrossRefGoogle Scholar
  10. 80LNOVOSELLER.
    MULTICHANNEL RESONANCE PARAMETRIZATION IN THE PRESENCE OF AN INELASTIC BACKGROUND D.E. NOVOSELLER:NUCL.PHYS.B176(1980)153 2.4.1CrossRefADSGoogle Scholar
  11. 75LDICKEY.
    TEST OF DUALITY DIAGRAM PREDICTION FOR RESONANCE BACKGROUND J.O. DICKEY:NUCL.PHYS.B90(1975)501 AND PROC.11TH RENCONTRE DE MORIOND(1976);ED.J.TRAN THANH VAN (1976) 2.4.1CrossRefADSGoogle Scholar
  12. 73LLICHTENBERG.
    MASS AND WIDTH OF A BROAD RESONANCE D.B. LICHTENBERG:LETT.NUOVO CIM.7(1973)727 2.4.1; 2.1.10CrossRefGoogle Scholar
  13. 76LVASAN.
    DETERMINATION OF THE POSITION AND RESIDUES OF THE DELTA ++ AND DELTA 0 POLES S.S. VASAN:NUCL.PHYS.B106(1976)535,526 2.4.1ADSGoogle Scholar
  14. 72LBALL.
    DETERMINATION OF THE BASIC PARAMETERS OF THE 3-3 RESONANCE J. BALL ET AL.:PHYS.REV.LETT.28(1972)1143 2.4.1CrossRefADSGoogle Scholar
  15. 74LSPEARMAN.
    DETERMINATION OF THE DELTA(1236)POLE POSITION D. SPEARMAN:PHYS.REV.D10(1974)1660 2.4.1ADSGoogle Scholar
  16. 75LBALL.
    DETERMINATION OF THE DELTA ++ DELTA O MASS DIFFERENCE J. BALL, R.L. GOBLE:PHYS.REV.D11(1975)1171 2.1.17; 2.4.1ADSGoogle Scholar
  17. 73LNOGOVA.
    DETERMINATION OF THE DELTA(1232)POLE POSITION A. NOGOVA, J. PISUT:NUCL.PHYS.B61(1973)445,B65(1973)544(ERRATUM) 2.4.1CrossRefADSGoogle Scholar
  18. 75LLICHARD.
    DETERMINATION OF RESONANCE PARAMETERS FROM PARTIAL WAVE AMPLITUDES P. LICHARD, J. PISUT in"HADRON INTERACTIONS AT LOW ENERGIES" (TRIANGLE MEETING, NOV 1973), P. 329; ED.M. BLAZEK;VEDA, BRATISLAVA (1975) 2.4.1Google Scholar
  19. 72LCAPRINI.
    BIAS-FREE METHOD FOR THE DETECTION OF BOUND,ANTIBOUND AND RESONANT STATES FROM DATA I. CAPRINI, S. CIULLI, C. POMPONIU, I. SABBA-STEFANESCU:PHYS.REV.D5(1972)1658 2.4.1ADSGoogle Scholar
  20. 73LSABBA-STEFANESCU.
    ON THE ANALYTIC EXTRAPOLATION OF SCATTERING AMPLITUDES IN L SQUARED NORM I. SABBA-STEFANESCU:NUCL.PHYS.B56(1973)287 2.4.1CrossRefADSGoogle Scholar
  21. 77LKANAZAWA.
    ON A POLE SEARCH PROBLEM OF SCATTERING AMPLITUDES A. KANAZAWA et al.:PROGR.THEOR.PHYS.57(1977)295 2.4.1CrossRefADSGoogle Scholar
  22. 77LMIYAKOSHI.
    BIAS-FREE DETERMINATION OF DELTA (1232)POLE POSITION T. MIYAKOSHI, A. KANAZAWA:PROGR.THEOR.PHYS.58(1977)1421 2.4.1CrossRefADSGoogle Scholar
  23. 77LMIYAKOSHI.
    BIAS-FREE DETERMINATION OF DELTA (1232)POLE POSITION T. MIYAKOSHI, A. KANAZAWA:PROGR.THEOR.PHYS.58(1977)1421 2.4.1CrossRefADSGoogle Scholar
  24. 77LKANAZAWA.
    ON A POLE SEARCH PROBLEM OF SCATTERING AMPLITUDES A. KANAZAWA et al.:PROGR.THEOR.PHYS.57(1977)295 2.4.1CrossRefADSGoogle Scholar
  25. 79LLANG.
    DETERMINATION OF RESONANCE PARAMETERS C.B. LANG, A. MAS-PARAREDA:PHYS.REV.D19(1979)956 2.4.1ADSGoogle Scholar
  26. 79LCUTKOSKY-2.
    PION-NUCLEON PARTIAL WAVE AMPLITUDES R.E. CUTKOSKY, C.P. FORSYTH, R.E. HENDRICK, R.L. KELLY:PHYS.REV.D20(1979)2839 2.1.9; 2.4.1ADSGoogle Scholar
  27. 79LJAFFE.
    CONNECTION BETWEEN QUARK-MODEL EIGENSTATES AND LOWENERGY SCATTERING R.L. JAFFE, F.E. LOW:PHYS.REV.D19(1979)2105 2.4.1; 2.5.1ADSGoogle Scholar
  28. 79LROIESNEL.
    LOW-ENERGY MESON-NUCLEON SCATTERING ANALYSIS IN THE P-MATRIX FORMALISM C. ROIESNEL:PHYS.REV.D20(1979)1646 2.5.1; 2.4.1ADSGoogle Scholar
  29. 64LFESHBACH.
    THE BOUNDARY CONDITION MODEL OF STRONG INTERACTIONS H. FESHBACH, E.L. LOMON:ANN.OF PHYS.29(1964)19 2.4.1; 2.5.1CrossRefADSMathSciNetGoogle Scholar
  30. 78LPIETARINEN-1.
    ELASTIC PARTIAL WAVE ANALYSIS E. PIETARINEN:HELSINKI PREPRINT HU-TFT-78-13 2.1.7Google Scholar
  31. 80LNOVOSELLER.
    MULTICHANNEL RESONANCE PARAMETRIZATION IN THE PRESENCE OF AN INELASTIC BACKGROUND D.E. NOVOSELLER:NUCL.PHYS.B176(1980)153 2.4.1CrossRefADSGoogle Scholar
  32. 59LADAIR.
    HIGH ENERGY MAXIMA IN THE PI N CROSS SECTIONS R.K. ADAIR: PHYS.REV.113(1959)338 2.4.1CrossRefADSGoogle Scholar
  33. 47LWIGNER.
    HIGHER ANGULAR MOMENTA AND LONG RANGE INTERACTION IN RESONANCE REACTIONS E.P. WIGNER, L. EISENBUD:PHYS.REV.72(1947)29 2.4.1CrossRefADSGoogle Scholar
  34. 67RDONNACHIE.
    PION-NUCLEON PHASE SHIFT ANALYSIS A. DONNACHIE IN"PRATICLE INTERACTIONS AT HIGH ENERGIES";EDS.T.W. PREIST, L.L.J. VICK;OLIVER AND BOYD(1967) A.7.1; 2.1.5; 2.4.1; 2.6.7Google Scholar
  35. 70RDALITZ.
    WHAT IS A RESONANCE? R.H. DALITZ, R.G. MOORHOUSE:PROC.ROY.SOC.LOND.A318(1970)279 2.4.1ADSGoogle Scholar
  36. 66LMICHAEL.
    RESONANCES IN THE S11 PION NUCLEON AMPLITUDE C. MICHAEL:PHYS.LETT.21(1966)93 2.4.1CrossRefADSGoogle Scholar
  37. 73RBRANSDEN-MOORHOUSE.
    THE PION-NUCLEON SYSTEM B.H. BRANSDEN, R.G. MOORHOUSE;PRINCETON UNIV.PRESS (1973) 2; AGoogle Scholar
  38. 74RPERL.
    HIGH ENERGY HADRON PHYSICS M.L. PERL;WILEY-INTERSCIENCE(1974) A; 2Google Scholar
  39. 67RPILKUHN.
    THE INTERACTION OF HADRONS H. PILKUHN;NORTH-HOLLAND(1967) A; 2Google Scholar
  40. 79RPILKUHN.
    RELATIVISTIC PARTICLE PHYSICS H. PILKUHN;SPRINGER(1979) A; 2Google Scholar
  41. 68RBARBARO-GALTIERI.
    BARYON RESONANCES A. BARBARO-GALTIERI IN"ADVANCES IN PARTICLE PHYSICS", VOL.2,P.175;EDS.R.L. COOL, R.E. MARSHAK;INTERSCIENCE (1968) 2.4.1Google Scholar
  42. 73RDONNACHIE.
    PARITIAL WAVE ANALYSIS AND BARYON RESONANCES A. DONNACHIE:REP.PROGR.PHYS36(1973)695 2.1; 2.4.1CrossRefADSGoogle Scholar
  43. 79RPROTOPOPESCU-SAMIOS.
    LIGHT HADRON SPECTROSCOPY:EXPERIMENTAL AND QUARK MODEL INTERPRETATIONS S.D. PROTOPOPESCU, N.P. SAMIOS:ANN.REV.NUCL.SCI. 29(1979)339CrossRefADSGoogle Scholar
  44. 80RLIPKIN.
    WHO NEEDS BARYON SPECTROSCOPY? H.J. LIPKIN IN"BARYON 80";PROC.4TH INT.CONF.ON BARYON RESONANCES(TORONTO),P.35;ED.N. ISGUR 2.4.1Google Scholar
  45. 82RROOS.
    REVIEW OF PARTICLE PROPERTIES M. ROOS ET AL.(PARTICLE DATA GROUP):PHYS.LETT. 111B(1982)1 2.4.1MathSciNetGoogle Scholar
  46. 80RBRICMAN.
    REVIEW OF PARTICLE PROPERTIES C. BRICMAN ET AL.CERN REPRINT=R.L. KELLY ET AL.:REV.MOD. 2.4.1Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  1983

Authors and Affiliations

  • G. Höhler

There are no affiliations available

Personalised recommendations