Skip to main content

A Latent Variable Approach to Modelling Multivariate Geostatistical Skew-Normal Data

  • Chapter
  • First Online:
Advances in Latent Variables

Part of the book series: Studies in Theoretical and Applied Statistics ((STASSPSS))

Abstract

In this paper we propose a spatial latent factor model to deal with multivariate geostatistical skew-normal data. In this model we assume that the unobserved latent structure, responsible for the correlation among different variables as well as for the spatial autocorrelation among different sites is Gaussian, and that the observed variables are skew-normal. For this model we provide some of its properties like its spatial autocorrelation structure and its finite dimensional marginal distributions. Estimation of the unknown parameters of the model is carried out by employing a Monte Carlo Expectation Maximization algorithm, whereas prediction at unobserved sites is performed by using closed form formulas and Markov chain Monte Carlo algorithms. Simulation studies have been performed to evaluate the soundness of the proposed procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allard, D., Naveau, P.: A new spatial skew-normal random field model. Commun. Stat. Theory 36, 1821–1834 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Azzalini, A.: The skew-normal distribution and related multivariate families. Scand. J. Stat. 32, 159–188 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Azzalini, A., Dalla Valle, A.: The multivariate skew-normal distribution. Biometrika 83, 715–726 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bechler, A., Romary, T., Jeannée, N., Desnoyers, Y.: Geostatistical sampling optimization of contaminated facilities. Stoch. Env. Res. Risk A. 27, 1967–1974 (2013)

    Article  Google Scholar 

  5. Brenning, A., Dubois, G.: Towards generic real-time mapping algorithms for environmental monitoring and emergency detection. Stoch. Env. Res. Risk A. 22, 601–611 (2008)

    Article  MathSciNet  Google Scholar 

  6. Chagneau, P., Mortier, F., Picard, N., Bacro, J.-N.: A hierarchical Bayesian model for spatial prediction of multivariate non-Gaussian random fields. Biometrics 67, 97–105 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. De, S., Faria, Á.E.: Dynamic spatial Bayesian models for radioactivity deposition. J. Time Ser. Anal. 32, 607–617 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. De Oliveira, V., Kedem, B., Short, D.A.: Bayesian prediction of transformed Gaussian random fields. J. Am. Stat. Assoc. 92 1422–1433 (1997)

    MATH  Google Scholar 

  9. Desnoyers, Y., Chilès, J.-P., Dubot, D., Jeannée, N., Idasiak, J.-M.: Geostatistics for radiological evaluation: study of structuring of extreme values. Stoch. Env. Res. Risk A. 25, 1031–1037 (2011)

    Article  Google Scholar 

  10. Diggle, P.J., Moyeed, R.A., Tawn, J.A.: Model-based geostatistics (with discussion). Appl. Stat. 47, 299–350 (1998)

    MATH  MathSciNet  Google Scholar 

  11. Dubois, G., Galmarini, S.: Spatial interpolation comparison (SIC) 2004: introduction to the exercise and overview of results. In: Dubois, G. (ed.) Automatic Mapping Algorithms for Routine and Emergency Monitoring Data - Spatial Interpolation Comparison 2004, Office for Official Publication of the European Communities (2005)

    Google Scholar 

  12. Fort, G., Moulines, E.: Convergence of the Monte Carlo expectation maximization for curved exponential families. Ann. Stat. 31, 1220–1259 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. González-Farías, G., Domínguez-Molina, J.A., Gupta, A.K.: The closed skew-normal distribution. In: Genton, M.G. (ed.) Skew-Elliptical Distributions and Their Applications: A Journey Beyond Normality, pp. 25–42. Chapman & Hall/CRC, London (2004)

    Google Scholar 

  14. González-Farías, G., Domínguez-Molina, J.A., Gupta, A.K.: Additive properties of skew-normal random vectors. J. Stat. Plan. Infer. 126, 521–534 (2004)

    Article  MATH  Google Scholar 

  15. Gräler, B.: Modelling skewed spatial random fields through the spatial vine copula. Spat. Stat. (2014). http://dx.doi.org/10.1016/j.spasta.2014.01.001

  16. Herranz, M., Romero, L.M., Idoeta, R., Olondo, C., Valiño, F., Legarda, F.: Inventory and vertical migration of90Sr fallout and137Cs/90Sr ratio in Spanish mainland soils. J. Env. Radioact. 102, 987–994 (2011)

    Article  Google Scholar 

  17. Hosseini, F., Eidsvik, J., Mohammadzadeh, M.: Approximate Bayesian inference in spatial GLMM with skew normal latent variables. Comput. Stat. Data Anal. 55, 1791–1806 (2011)

    Article  MathSciNet  Google Scholar 

  18. Kazianka, H., Pilz, J.: Copula-based geostatistical modeling of continuous and discrete data including covariates. Stoch. Env. Res. Risk A. 24, 661–673 (2010)

    Article  Google Scholar 

  19. Kazianka, H., Pilz, J.: Bayesian spatial modeling and interpolation using copulas. Comput. Geosci. 37, 310–319 (2011)

    Article  Google Scholar 

  20. Kim, H.-M., Mallick, B.K.: A Bayesian prediction using the skew Gaussian distribution. J. Stat. Plan. Infer. 120, 85–101 (2004)

    Google Scholar 

  21. Lunn, D., Spiegelhalter, D., Thomas, A., Best, N.: The BUGS project: evolution, critique and future directions. Stat. Med. 28, 3049–3067 (2009)

    Article  MathSciNet  Google Scholar 

  22. Maglione, D.S., Diblasi, A.,M.: Exploring a valid model for the variogram of an isotropic spatial process. Stoch. Env. Res. Risk A. 18, 366–376 (2004)

    Google Scholar 

  23. McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions, 2nd edn. Wiley, New York (2007)

    Google Scholar 

  24. Minozzo, M., Ferracuti, L.: On the existence of some skew-normal stationary processes. Chil. J. Stat. 3, 157–170 (2012)

    MathSciNet  Google Scholar 

  25. Minozzo, M., Ferrari, C.: Multivariate geostatistical mapping of radioactive contamination in the Maddalena Archipelago (Sardinia, Italy). AStA Adv. Stat. Anal. 97, 195–213 (2013)

    Article  MathSciNet  Google Scholar 

  26. Minozzo, M., Fruttini, D.: Loglinear spatial factor analysis: an application to diabetes mellitus complications. Environmetrics 15, 423–434 (2004)

    Article  Google Scholar 

  27. Oliver, M.A., Badr, I.: Determining the spatial scale of variation in soil radon concentration. Math. Geol. 27, 893–922 (1995)

    Article  Google Scholar 

  28. Pilz, J., Spöck, G.: Why do we need and how should we implement Bayesian kriging methods. Stoch. Env. Res. Risk A. 22, 621–632 (2008)

    Article  Google Scholar 

  29. R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0 (2012)

    Google Scholar 

  30. Ren, Q., Banerjee, S.: Hierarchical factor models for large spatially misaligned data: a low-rank predictive process approach. Biometrics 69, 19–30 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  31. Schmidt, A.M., Rodriguez, M.A.: Modelling multivariate counts varying continuously in space. Bayesian Stat. 9 (2011). doi:10.1093/acprof:oso/9780199694587.003.0020

    Google Scholar 

  32. Spöck, G.: Spatial sampling design with skew distributions: the special case of trans-Gaussian kriging. Ninth International Geostatistical Congress, Oslo, Norway, 11–15 June 2012, 20 pages

    Google Scholar 

  33. Wibrin, M., Bogaert, P., Fasbender, D.: Combining categorical and continuous spatial information within the Bayesian maximum entropy paradigm. Stoch. Env. Res. Risk A. 20, 423–433 (2006)

    Article  MathSciNet  Google Scholar 

  34. Zhang, H.: On estimation and prediction for spatial generalized linear mixed models. Biometrics 58, 129–136 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  35. Zhang, H., El-Shaarawi, A.: On spatial skew-Gaussian processes and applications. Environmetrics 21, 33–47 (2010)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding from the Italian Ministry of Education, University and Research (MIUR) through PRIN 2008 project 2008MRFM2H.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luca Bagnato or Marco Minozzo .

Editor information

Editors and Affiliations

Appendix

Appendix

In this appendix we report some distributional results regarding the observable processes \(Y _{i}\left (\mathbf{x}\right )\). Let us first recall some definitions. Following, for instance, [2], we say that a random vector Y = (Y 1, , Y n )T has an extended skew-normal distribution with parameters \(\boldsymbol{\mu }\), \(\boldsymbol{\varSigma }\), \(\boldsymbol{\alpha }\) and τ, and we write \(\mathbf{Y} \sim \mbox{ ESN}_{n}(\boldsymbol{\mu },\boldsymbol{\varSigma },\boldsymbol{\alpha },\tau )\), if it has probability density function of the form

$$\displaystyle{f(\mathbf{y}) =\phi _{n}(\mathbf{y}-\boldsymbol{\mu };\boldsymbol{\varSigma }) \cdot \varPhi (\alpha _{0} +\boldsymbol{\alpha } ^{T}\mathbf{D}^{-1}(\mathbf{y}-\boldsymbol{\mu }))/\varPhi (\tau ),\ \ \ \ \mbox{ for}\ \ \ \mathbf{y} \in \mathbb{R}^{n},}$$
(10)

where \(\boldsymbol{\mu }\in \mathbb{R}^{n}\) is a vector of location parameters, \(\phi _{n}(\ \cdot \;\boldsymbol{\varSigma })\) is the n-dimensional normal density function with zero mean vector and (positive-definite) variance-covariance matrix \(\boldsymbol{\varSigma }\) having elements σ ij , Φ(⋅ ) is the scalar N(0,1) distribution function, \(\mathbf{D} = \mbox{ diag}(\sigma _{11},\ldots,\sigma _{nn})^{1/2}\) is the diagonal matrix formed with the standard deviations of the scale matrix \(\boldsymbol{\varSigma }\), \(\boldsymbol{\alpha }\in \mathbb{R}^{n}\) is a vector of skewness parameters, and \(\tau \in \mathbb{R}\) is an additional parameter. Moreover, \(\alpha _{0} =\tau (1 +\boldsymbol{\alpha } ^{T}\mathbf{R}\boldsymbol{\alpha })^{1/2}\) where R is the correlation matrix associated to \(\boldsymbol{\varSigma }\), that is, \(\mathbf{R} = \mathbf{D}^{-1}\boldsymbol{\varSigma }\mathbf{D}^{-1}\). Clearly, this distribution extends the multivariate normal distribution through the parameter vector \(\boldsymbol{\alpha }\), and for \(\boldsymbol{\alpha }= 0\) it reduces to the latter. When τ = 0, also α 0 = 0 and (10) reduces to

$$\displaystyle{ f(\mathbf{y}) = 2 \cdot \phi _{n}(\mathbf{y}-\boldsymbol{\mu };\boldsymbol{\varSigma }) \cdot \varPhi (\boldsymbol{\alpha }^{T}\mathbf{D}^{-1}(\mathbf{y}-\boldsymbol{\mu })),\ \ \ \ \mbox{ for}\ \ \ \mathbf{y} \in \mathbb{R}^{n}. }$$
(11)

In this case we simply say that Y has a skew-normal distribution and we write, more concisely, \(\mathbf{Y} \sim \mbox{ SN}_{n}(\boldsymbol{\mu },\boldsymbol{\varSigma },\boldsymbol{\alpha })\).

According to [13] and [14], we say that the n-dimensional random vector Y = (Y 1, , Y n )T has a multivariate closed skew-normal distribution, and we write \(\mathbf{Y} \sim \mbox{ CSN}_{n,m}(\boldsymbol{\mu },\boldsymbol{\varSigma },\mathbf{D}_{c},\boldsymbol{\nu },\boldsymbol{\varDelta })\), if it has probability density function of the form

$$\displaystyle{ f(\mathbf{y}) = \frac{1} {\varPhi _{m}(\mathbf{0};\boldsymbol{\nu },\boldsymbol{\varDelta }+\mathbf{D}_{c}^{T}\boldsymbol{\varSigma }\mathbf{D}_{c})} \cdot \phi _{n}(\mathbf{y};\boldsymbol{\mu },\boldsymbol{\varSigma }) \cdot \varPhi _{m}(\mathbf{D}_{c}^{T}(\mathbf{y}-\boldsymbol{\mu });\boldsymbol{\nu },\boldsymbol{\varDelta }),\ \ \ \ \mbox{ for}\ \ \ \mathbf{y} \in \mathbb{R}^{n}, }$$
(12)

where: m is an integer greater than 0; \(\boldsymbol{\mu }\in \mathbb{R}^{n}\); \(\boldsymbol{\varSigma }\in \mathbb{R}^{n\times n}\) is a positive-definite matrix; \(\mathbf{D}_{c} \in \mathbb{R}^{n\times m}\) is an n × m matrix; \(\boldsymbol{\nu }\in \mathbb{R}^{m}\) is a vector; \(\boldsymbol{\varDelta }\in \mathbb{R}^{m\times m}\) is a positive-definite matrix; and \(\phi _{n}(\ \cdot \;\boldsymbol{\mu },\boldsymbol{\varSigma })\) and \(\varPhi _{n}(\ \cdot \;\boldsymbol{\mu },\boldsymbol{\varSigma })\) are the probability density function and the cumulative distribution function, respectively, of the n-dimensional normal distribution with mean vector \(\boldsymbol{\mu }\) and variance-covariance matrix \(\boldsymbol{\varSigma }\).

Though, as we have already noticed, the multivariate finite-dimensional marginal distributions of the multivariate spatial process \(\left (Y _{1}\left (\mathbf{x}\right ),\ldots,Y _{m}\left (\mathbf{x}\right )\right )^{T}\), for \(\mathbf{x} \in \mathbb{R}^{2}\), are not skew-normal (in the sense of [2]), it is possible to show that they are closed skew-normal, according to the definition of [13]. This implies that, for any given i = 1, , m, each univariate spatial process \(Y _{i}\left (\mathbf{x}\right )\) has all its finite-dimensional marginal distributions that are closed skew-normal. To see this (see also [24]), consider n spatial locations x 1, , x n , and the corresponding n-dimensional random vector Y = (Y i (x 1), , Y i (x n ))T. Recalling that for any given \(\mathbf{x} \in \mathbb{R}^{2}\) we can write \(Y _{i}(\mathbf{x}) =\beta _{i} + Z_{i}(\mathbf{x}) +\omega _{i}S_{i}(\mathbf{x})\), the vector Y can be written as \(\mathbf{Y} =\beta _{i}\mathbf{1}_{n} + \mathbf{Z} + \mathbf{D}_{\omega }\mathbf{S} = \mathbf{W} + \mathbf{V}\), where \(\mathbf{W} =\beta _{i}\mathbf{1}_{n} + \mathbf{Z}\), V = D ω S, Z = (Z i (x 1), , Z i (x n ))T, S = (S i (x 1), , S i (x n ))T and D ω is the n × n diagonal matrix with ω i on the diagonal. Now, since S i (x), for \(\mathbf{x} \in \mathbb{R}^{2}\), are independently and identically distributed as CSN1, 1(0, 1, α i , 0, 1), according to Theorem 3 of [14], we have that \(\mathbf{S} \sim \mbox{ CSN}_{n,n}(0,\mathbf{I}_{n},\mathbf{D}_{\alpha },0,\mathbf{I}_{n})\), where D α is the n × n diagonal matrix with α i on the diagonal. On the other hand, since Z follows a multivariate normal distribution with mean 0 and covariance matrix \(\boldsymbol{\varSigma }_{Z}\) with entries given by \(\mathrm{Cov}\big[Z_{i}(\mathbf{x}),Z_{i}(\mathbf{x} + \mathbf{h})\big] =\varsigma _{ i}^{2}\rho (\mathbf{h})\), we also have that \(\mathbf{Z} \sim \mbox{ CSN}_{n,1}(0,\boldsymbol{\varSigma }_{Z},0,0,1)\). Moreover, being W distributed as a multivariate normal with mean β i 1 n and covariance matrix \(\boldsymbol{\varSigma }_{Z}\), we can write that \(\mathbf{W} \sim \mbox{ CSN}_{n,1}(\beta _{i}\mathbf{1}_{n},\boldsymbol{\varSigma }_{Z},0,0,1)\), and using Theorem  of [14] we can also write that \(\mathbf{V} \sim \mbox{ CSN}_{n,n}(0,\mathbf{D}_{\omega ^{2}},\mathbf{D}_{\alpha /\omega },0,\mathbf{I}_{n})\), where \(\mathbf{D}_{\omega ^{2 }}\) is the n × n diagonal matrix with ω i 2 on the diagonal, and D αω is the n × n diagonal matrix with α i ω i on the diagonal. Thus, considering that \(\mathbf{Y} = \mathbf{W} + \mathbf{V}\), we can conclude, using Theorem 4 of [14], that \(\mathbf{Y} \sim \mbox{ CSN}_{n,n+1}(\beta _{i}\mathbf{1}_{n},\boldsymbol{\varSigma }_{Z} +\omega _{ i}^{2}\mathbf{I}_{n},\mathbf{D}^{{\ast}},0,\boldsymbol{\varDelta }^{{\ast}})\), for some matrices D and \(\boldsymbol{\varDelta }^{{\ast}}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bagnato, L., Minozzo, M. (2014). A Latent Variable Approach to Modelling Multivariate Geostatistical Skew-Normal Data. In: Carpita, M., Brentari, E., Qannari, E. (eds) Advances in Latent Variables. Studies in Theoretical and Applied Statistics(). Springer, Cham. https://doi.org/10.1007/10104_2014_14

Download citation

Publish with us

Policies and ethics