Skip to main content

Spontaneous Formation and Switching of Optical Patterns in Semiconductor Microcavities

  • Chapter
  • First Online:
Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 1))

  • 1737 Accesses

Abstract

We study spontaneous pattern formation and symmetry breaking in broad area and pre-patterned (spatially modulated) semiconductor microcavities under lasing conditions. In broad area VCSELs, we observe the spontaneous formation of regular arrays consisting of charge “±1” optical vortices. The formation of these patterns stems from transverse mode locking of almost wavelength degenerated Gauss-Laguerre (GL) modes. The observed patterns in Gain modulated broad area VCSELs and their dynamical behavior depends dramatically on the modulation strength. In ring shaped VCSELs lasers we observe necklace-like pattern formation and switching as a function of the injection current. The formation of the patterns and, in particular, their switching is shown to stem from stability loss of the lasing pattern to perturbations of more complex pattern which, in turn, is stable under similar pumping conditions. Having the advantage of a strong, saturating nonlinear response with an inherent loss compensation mechanism, such lasers are potentially the best microlabortories for studying nonlinear phenomena and for the generation and employment of complex optical fields. Applications can be found in optical data storage, information distribution and processing, laser cooling and more.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.J. Firth, A.J. Scroggie, Spontaneous pattern formation in an absorptive system. Europhys. Lett. 26, 521–526 (1994)

    Article  ADS  Google Scholar 

  2. G. D’Alessandro, W.J. Firth, Hexagonal spatial patterns for a Kerr slice with a feedback mirror. Phys. Rev. A 46, 537–548 (1992)

    Article  ADS  Google Scholar 

  3. E. Pampaloni, S. Residori, F.T. Arecchi, Roll-hexagon transition in a Kerr-like experiment. Europhys. Lett. 24, 647–652 (1993)

    Article  ADS  Google Scholar 

  4. M. Orenstein, N.G. Stoffel, A.C. Von Lehmen, J.P. Harbison, L.T. Florez, Vertical-cavity surface-emitting InGaAs/GaAs lasers with planar lateral definition. Appl. Phys. Lett. 56, 2384–2386 (1990)

    Article  ADS  Google Scholar 

  5. J.R. Marciante, G.P. Agrawal, Nonlinear mechanisms of filamentation in broad-area semiconductor lasers. IEEE J. Quantum Electron. 32, 590–596 (1996)

    Article  ADS  Google Scholar 

  6. L. Djaloshinski, M. Orenstein, Coupling of concentric semiconductor microring lasers. Opt. Lett. 23, 364–366 (1998)

    Article  ADS  Google Scholar 

  7. J. Scheuer, M. Orenstein, Optical vortices crystals—spontaneous generation in nonlinear semiconductor microcavities. Science 285, 230–233 (1999)

    Article  Google Scholar 

  8. H. Adachihara, O. Hess, E. Abraham, P. Ru, J.V. Moloney, Spatiotemporal chaos in broad-area semiconductor lasers. J. Opt. Soc. Am B. 10, 658–665 (1993)

    Article  ADS  Google Scholar 

  9. R.J. Lang, D. Mehuys, A. Hardy, K.D. Dzurko, D.F. Welch, Spatial evolution of filaments in broad area diode laser amplifiers. Appl. Phys. Lett. 62, 1209–1211 (1993)

    Article  ADS  Google Scholar 

  10. V.N. Morozov, J.A. Neff, H. Zhou, Analysis of vertical-cavity surface-emitting laser multimode behavior. IEEE J. Quantum Electron. 33, 980–988 (1997)

    Article  ADS  Google Scholar 

  11. A. Valle, L. Pesquera, P. Rees and A. Shore, Transverse mode selection and light-current characteristics in index-guided VCSELs, Digest of the LEOS Summer Topical Meetings, pp. III 53–54 (1999)

    Google Scholar 

  12. B.J. Flanigan, J.E. Carroll, Mode selection in complex-coupled semiconductor DFB lasers. Electron. Lett. 31, 977–979 (1995)

    Article  Google Scholar 

  13. K.H. Hahn, M.R. Tan, Y.M. Houng, S.Y. Wang, Large area multitransverse-mode VCSELs for modal noise reduction in multimode fibre systems. Electron. Lett. 29, 1482–1483 (1993)

    Article  Google Scholar 

  14. K. Petermann, Nonlinear distortions and noise in optical communication systems due to fiber connectors. IEEE J. Quantum Electron. 16, 761–770 (1980)

    Article  ADS  Google Scholar 

  15. D. Michaelis, U. Peschel, F. Lederer, Multistable localized structures and superlattices in semiconductor optical resonators. Phys. Rev. A 56, R3366–R3369 (1997)

    Article  ADS  Google Scholar 

  16. W.J. Firth, A.J. Scroggie, G.S. McDonald, Hexagonal patterns in optical bistability. Phys. Rev. A 46, R3609–R3612 (1992)

    Article  ADS  Google Scholar 

  17. M. Brambilla, F. Battipede, L.A. Lugiato, V. Penna, F. Prati, C. Tamm, C.O. Weiss, Transverse laser patterns. I. Phase singularity crystals. Phys. Rev. A 43, 5090–5113 (1991)

    Article  ADS  Google Scholar 

  18. E. Pampaloni, S. Residori, F.T. Arecchi, Roll-hexagon transition in a Kerr-like experiment. Europhys. Lett. 24, 647–652 (1993)

    Article  ADS  Google Scholar 

  19. G.R. Hadley, K.L. Lear, M.E. Warren, K.D. Choquette, J.W. Scott, S.W. Corzine, Comprehensive numerical modeling of vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 32, 607–616 (1996)

    Article  ADS  Google Scholar 

  20. J.W. Scott, R.S. Geels, S.W. Corzine, L.A. Coldern, Modeling temperature effects and spatial hole burning to optimize vertical-cavity surface-emitting laser performance. IEEE J. Quantum Electron. 29, 1295 (1993)

    Article  ADS  Google Scholar 

  21. G. Chen, A comparative study on the thermal characteristics of vertical-cavity surface-emitting lasers. J. Appl. Phys. 77, 4251–4258 (1995)

    Article  ADS  Google Scholar 

  22. D. T. Haar, H. Wergeland, Elements of thermodynamics. (Addison-Wesley Press, Reading)

    Google Scholar 

  23. N.K. Duta, W. Tu, G. Hasnain, G. Zydzik, Y.H. Wang, A.Y. Cho, Anomalous temporal response of gain guided surface emitting lasers. Electron. Lett. 27, 208–210 (1991)

    Article  ADS  Google Scholar 

  24. A.E. Siegman, Lasers (University Science Books, California, 1986)

    Google Scholar 

  25. C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum mechanics (Wiley-Interscience, New-York, 1977)

    Google Scholar 

  26. L.A. Lugiato, C. Oldano, L.M. Narducci, Cooperative frequency locking and stationary spatial structures in lasers. J. Opt. Soc. Am. B. 5, 879–888 (1988)

    Article  ADS  Google Scholar 

  27. E. Abramochkin, V. Volostnikov, Beam transformations and nontransformed beams. Opt. Comm. 83, 123–135 (1991)

    Article  ADS  Google Scholar 

  28. K. Staliunas, Stabilization of spatial solitons by gain diffusion. Phys. Rev. A., 61, 053813-1–053813-6 (2000)

    Google Scholar 

  29. L.A. Coldern, S.W. Corzine, Diode lasers and photonic integrated circuits (Wiley-Interscience, New-York, 1995)

    Google Scholar 

  30. H. Yu, H. Zhang, Z. Wang, J. Wang, Z. Pan, S. Zhuang, D. Tang, Experimental observation of optical vortex in self-frequency-doubling generation. Appl. Phys. Lett. 99, 241102 (2011)

    Article  ADS  Google Scholar 

  31. K. Otsuka1, S. Chu, Generation of vortex array beams from a thin-slice solid-state laser with shaped wide-aperture laser-diode pumping. Opt. Lett. 34, 10 (2009)

    Google Scholar 

  32. P. Coulet, L. Gil, F. Rocca, Optical vortices. Optics Commun. 73, 403–408 (1989)

    Article  ADS  Google Scholar 

  33. H. Sakaguchi1, B. A. Malomed, Higher-order vortex solitons, multipoles, and supervortices on a square optical lattice. Europhys. Lett. 72, 698 (2005)

    Google Scholar 

  34. R. Driben, B.A. Malomed, Stabilization of two-dimensional solitons and vortices against supercritical collapse by lattice potentials. Eur. Phys. J. D 50, 317–323 (2008)

    Article  ADS  Google Scholar 

  35. T.S. Misirpashaev, C.W.J. Beenakker, Lasing threshold and mode competition in chaotic cavities. Phys. Rev. A 57, 2041–2045 (1998)

    Article  ADS  Google Scholar 

  36. J. Scheuer and M. Orenstein, Nonlinear switching and modulation instability of wave patterns in ring shaped VCSELs. J. Opt. Soc. Am. B, 19. 2384 (2002)

    Google Scholar 

  37. G.P. Agrawal, Nonlinear fiber optics (Academic Press Inc., San Diego, 1989)

    Google Scholar 

  38. A. Mohamadou1, B. E. Ayissi, T. C. Kofané, Instability criteria and pattern formation in the complex Ginzburg-Landau equation with higher-order terms, Phys. Rev. E. 74, 046604 (2006)

    Google Scholar 

  39. G.H.M. van Tartwijk, G.P. Agrawa, Maxwell–Bloch dynamics and modulation instabilities in fiber lasers and amplifiers. J. Opt. Soc. Am. B. 14, 2618 (1997)

    Article  ADS  Google Scholar 

  40. Y.J. He, H.H. Fan, J.W. Dong, H.Z. Wang, Self-trapped spatiotemporal necklace-ring solitons in the Ginzburg-Landau equation. Phys. Rev. E 74, 016611 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Scheuer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scheuer, J., Orenstein, M. (2013). Spontaneous Formation and Switching of Optical Patterns in Semiconductor Microcavities. In: Malomed, B. (eds) Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations. Progress in Optical Science and Photonics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10091_2012_25

Download citation

  • DOI: https://doi.org/10.1007/10091_2012_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21206-2

  • Online ISBN: 978-3-642-21207-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics