Skip to main content

From Coherent Modes to Turbulence and Granulation of Trapped Gases

  • Chapter
  • First Online:
Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 1))

Abstract

The process of exciting the gas of trapped bosons from an equilibrium initial state to strongly nonequilibrium states is described as a procedure of symmetry restoration caused by external perturbations. Initially, the trapped gas is cooled down to such low temperatures, when practically all atoms are in Bose–Einstein condensed state, which implies the broken global gauge symmetry. Excitations are realized either by imposing external alternating fields, modulating the trapping potential and shaking the cloud of trapped atoms, or it can be done by varying atomic interactions by means of Feshbach resonance techniques. Gradually increasing the amount of energy pumped into the system, which is realized either by strengthening the modulation amplitude or by increasing the excitation time, produces a series of nonequilibrium states, with the growing fraction of atoms for which the gauge symmetry is restored. In this way, the initial equilibrium system, with the broken gauge symmetry and all atoms condensed, can be excited to the state, where all atoms are in the normal state, with completely restored gauge symmetry. In this process, the system, starting from the regular superfluid state, passes through the states of vortex superfluid, turbulent superfluid, heterophase granular fluid, to the state of normal chaotic fluid in turbulent regime. Both theoretical and experimental studies are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon, Oxford, 1980)

    Google Scholar 

  2. V.I. Yukalov, A.S. Shumovsky, Lectures on Phase Transitions (World Scientific, Singapore, 1990)

    Google Scholar 

  3. D. Sornette, Critical Phenomena in Natural Sciences (Springer, Berlin, 2006)

    MATH  Google Scholar 

  4. A. Polkovnikov, K. Sengupta, A. Silva, M. Vengalatore, Rev. Mod. Phys. 83, 863 (2011)

    ADS  Google Scholar 

  5. L. Pitaevskii, S. Stringari, Bose–Einstein Condensation (Clarendon, Oxford, 2003)

    MATH  Google Scholar 

  6. E.H. Lieb, R. Seiringer, J.P. Solovej, J. Yngvason, The Mathematics of the Bose Gas and Its Condensation (Birkhauser, Basel, 2005)

    MATH  Google Scholar 

  7. V. Letokhov, Laser Control of Atoms and Molecules (Oxford University, New York, 2007)

    Google Scholar 

  8. C.J. Pethik, H. Smith, Bose–Einstein Condensation in Dilute Gases (Cambridge University, Cambridge, 2008)

    Google Scholar 

  9. P.W. Courteille, V.S. Bagnato, V.I. Yukalov, Laser Phys. 11, 659 (2001)

    Google Scholar 

  10. J.O. Andersen, Rev. Mod. Phys. 76, 599 (2004)

    ADS  MATH  Google Scholar 

  11. V.I. Yukalov, Laser Phys. Lett. 1, 435 (2004)

    ADS  Google Scholar 

  12. K. Bongs, K. Sengstock, Rep. Prog. Phys. 67, 907 (2004)

    ADS  Google Scholar 

  13. V.I. Yukalov, M.D. Girardeau, Laser Phys. Lett. 2, 375 (2005)

    ADS  Google Scholar 

  14. A. Posazhennikova, Rev. Mod. Phys. 78, 1111 (2006)

    ADS  Google Scholar 

  15. V.I. Yukalov, Laser Phys. Lett. 4, 632 (2007)

    ADS  Google Scholar 

  16. N.P. Proukakis, B. Jackson, J. Phys. B 41, 203002 (2008)

    ADS  Google Scholar 

  17. V.A. Yurovsky, M. Olshanii, D.S. Weiss, Adv. At. Mol. Opt. Phys. 55, 61 (2008)

    ADS  Google Scholar 

  18. V.I. Yukalov, Laser Phys. 19, 1 (2009)

    ADS  Google Scholar 

  19. A.L. Fetter, Rev. Mod. Phys. 81, 647 (2009)

    ADS  Google Scholar 

  20. V.I. Yukalov, Phys. Part. Nucl. 42, 460 (2011)

    Google Scholar 

  21. N.N. Bogolubov, Lectures on Quantum Statistics, vol. 1 (Gordon and Breach, New York, 1967)

    Google Scholar 

  22. N.N. Bogolubov, Lectures on Quantum Statistics, vol. 2 (Gordon and Breach, New York, 1970)

    Google Scholar 

  23. V.I. Yukalov, Phys. Rep. 208, 395 (1991)

    ADS  Google Scholar 

  24. V.I. Yukalov, Int. J. Mod. Phys. 21, 69 (2007)

    ADS  MATH  MathSciNet  Google Scholar 

  25. V.I. Yukalov, Ann. Phys. (N.Y.) 323, 461 (2008)

    ADS  MATH  MathSciNet  Google Scholar 

  26. V.I. Yukalov, Phys. Lett. A 375, 2797 (2011)

    ADS  MATH  MathSciNet  Google Scholar 

  27. E.P. Gross, Phys. Rev. 106, 161 (1957)

    ADS  MATH  Google Scholar 

  28. E.P. Gross, Ann. Phys. (N.Y.) 4, 57 (1958)

    ADS  MATH  Google Scholar 

  29. V.L. Ginzburg, L.P. Pitaevskii, J. Exp. Theor. Phys. 7, 858 (1958)

    MathSciNet  Google Scholar 

  30. E.P. Gross, Nuovo Cimento 20, 454 (1961)

    MATH  Google Scholar 

  31. L.P. Pitaevskii, J. Exp. Theor. Phys. 13, 451 (1961)

    MathSciNet  Google Scholar 

  32. B.A. Malomed, Soliton Management in Periodic Systems (Springer, New York, 2006)

    MATH  Google Scholar 

  33. Y.V. Kartashov, B.A. Malomed, L. Torner, Rev. Mod. Phys. 83, 247 (2011)

    ADS  Google Scholar 

  34. J.R. Klauder, B.S. Skagerstam, Coherent States (World Scientific, Singapore, 1985)

    MATH  Google Scholar 

  35. V.I. Yukalov, E.P. Yukalova, V.S. Bagnato, Phys. Rev. A 56, 4845 (1997)

    ADS  Google Scholar 

  36. V.I. Yukalov, E.P. Yukalova, V.S. Bagnato, Laser Phys. 10, 26 (2000)

    Google Scholar 

  37. E.A. Ostrovskaya, Y.S. Kivshar, M. Lisak, B. Hall, F. Cattani, D. Anderson, Phys. Rev. A 61, 031601 (2000)

    ADS  Google Scholar 

  38. D.L. Feder, M.S. Pindzola, L.A. Collins, B.I. Schneider, C.W. Clark, Phys. Rev. A 62, 053606 (2000)

    ADS  Google Scholar 

  39. V.I. Yukalov, E.P. Yukalova, V.S. Bagnato, Laser Phys. 11, 455 (2001)

    Google Scholar 

  40. Y.S. Kivshar, T.J. Alexander, S.K. Turitsin, Phys. Lett. A 278, 225 (2001)

    ADS  MATH  MathSciNet  Google Scholar 

  41. R. D’Agosta, B.A. Malomed, C. Presilla, Laser Phys. 12, 37 (2002)

    Google Scholar 

  42. V.I. Yukalov, E.P. Yukalova, V.S. Bagnato, Laser Phys. 12, 231 (2002)

    Google Scholar 

  43. V.I. Yukalov, E.P. Yukalova, V.S. Bagnato, Laser Phys. 12, 1325 (2002)

    Google Scholar 

  44. B. Damski, Z.P. Karkuszewski, K. Sasha, J. Zakrzewski, Phys. Rev. A 65, 013604 (2002)

    ADS  Google Scholar 

  45. R. D’Agosta, C. Presilla, Phys. Rev. A 65, 043609 (2002)

    ADS  Google Scholar 

  46. V.I. Yukalov, E.P. Yukalova, V.S. Bagnato, Phys. Rev. A 66, 043602 (2002)

    ADS  Google Scholar 

  47. N.P. Proukakis, P. Lambropoulos, Eur. Phys. J. D 19, 355 (2002)

    ADS  Google Scholar 

  48. V.I. Yukalov, E.P. Yukalova, V.S. Bagnato, Laser Phys. 13, 551 (2003)

    Google Scholar 

  49. V.I. Yukalov, E.P. Yukalova, V.S. Bagnato, Laser Phys. 13, 861 (2003)

    Google Scholar 

  50. S.K. Adhikari, Phys. Lett. A 308, 302 (2003)

    ADS  MATH  Google Scholar 

  51. S.K. Adhikari, J. Phys. B 36, 1109 (2003)

    ADS  Google Scholar 

  52. P. Muruganandam, S.K. Adhikari, J. Phys. B 36, 2501 (2003)

    ADS  Google Scholar 

  53. V.I. Yukalov, K.P. Marzlin, E.P. Yukalova, Laser Phys. 14, 565 (2004)

    Google Scholar 

  54. V.I. Yukalov, K.P. Marzlin, E.P. Yukalova, Phys. Rev. A 69, 023620 (2004)

    ADS  Google Scholar 

  55. S.K. Adhikari, Phys. Rev. A 69, 063613 (2004)

    ADS  Google Scholar 

  56. V.S. Filho, L. Tomio, A. Gammal, T. Frederico, Phys. Lett. A 325, 420 (2004)

    ADS  MATH  Google Scholar 

  57. E.R. Ramos, L. Sanz, V.I. Yukalov, V.S. Bagnato, Phys. Lett. A 365, 126 (2007)

    ADS  Google Scholar 

  58. E.R. Ramos, L. Sanz, V.I. Yukalov, V.S. Bagnato, Phys. Rev. A 76, 033608 (2007)

    ADS  Google Scholar 

  59. E.R. Ramos, L. Sanz, V.I. Yukalov, V.S. Bagnato, Nucl. Phys. 790, 776 (2007)

    Google Scholar 

  60. E.R. Ramos, E.A. Henn, J.A. Seman, M.A. Caracanhas, K.M. Magalhães, K. Helmerson, V.I. Yukalov, V.S. Bagnato, Phys. Rev. A 78, 063412 (2008)

    ADS  Google Scholar 

  61. V.I. Yukalov, V.S. Bagnato, Laser Phys. Lett. 6, 399 (2009)

    ADS  Google Scholar 

  62. J. Williams, R. Walser, J. Cooper, E.A. Cornell, M. Holland, Phys. Rev. A 61, 063612 (2000)

    ADS  Google Scholar 

  63. V.I. Yukalov, Laser Phys. Lett. 3, 406 (2006)

    ADS  Google Scholar 

  64. V.I. Yukalov, Moscow Univ. Phys. Bull. 31, 10 (1976)

    Google Scholar 

  65. V.I. Yukalov, J. Math. Phys. 32, 1235 (1991)

    ADS  MATH  MathSciNet  Google Scholar 

  66. V.I. Yukalov, E.P. Yukalova, Ann. Phys. (N.Y.) 277, 219 (1999)

    ADS  MATH  MathSciNet  Google Scholar 

  67. V.I. Yukalov, E.P. Yukalova, Chaos. Solit. Fract. 14, 839 (2002)

    ADS  MATH  MathSciNet  Google Scholar 

  68. N.N. Bogolubov, Y.A. Mitroposlky, Asymptotic Methods in the Theory of Nonlinear Oscillations (Gordon and Breach, New York, 1961)

    Google Scholar 

  69. V.I. Yukalov, E.P. Yukalova, Phys. Part. Nucl. 31, 561 (2000)

    Google Scholar 

  70. V.I. Yukalov, E.P. Yukalova, Phys. Part. Nucl. 35, 348 (2004)

    Google Scholar 

  71. A. Smerzi, S. Fantoni, S. Giovanazzi, S.R. Shenoy, Phys. Rev. Lett. 79, 4950 (1997)

    ADS  Google Scholar 

  72. V.I. Yukalov, Mod. Phys. Lett. B 17, 95 (2003)

    ADS  MATH  MathSciNet  Google Scholar 

  73. V.I. Yukalov, E.P. Yukalova, Laser Phys. 16, 354 (2006)

    ADS  Google Scholar 

  74. V.I. Yukalov, E.P. Yukalova, Phys. Rev. A 73, 022335 (2006)

    ADS  Google Scholar 

  75. V.I. Yukalov, E.P. Yukalova, J. Phys. Conf. Ser. 104, 012003 (2008)

    ADS  Google Scholar 

  76. B. Baizakov, G. Filatrella, B. Malomed, M. Salerno, Phys. Rev. E 71, 036619 (2005)

    ADS  Google Scholar 

  77. E.J. Yarmchuk, M.J. Gordon, R.E. Packard, Phys. Rev. Lett. 43, 214 (1979)

    ADS  Google Scholar 

  78. M.R. Matthews, B.P. Anderson, P.C. Haljan, D.S. Hall, C.E. Wieman, E.A. Cornell, Phys. Rev. Lett. 83, 2498 (1999)

    ADS  Google Scholar 

  79. K.W. Madison, F. Chevy, W. Wohlleben, J. Dalibard, Phys. Rev. Lett. 84, 806 (2000)

    ADS  Google Scholar 

  80. P. Rosenbusch, V. Bretin, J. Dalibard, Phys. Rev. Lett. 89, 200403 (2002)

    ADS  Google Scholar 

  81. V.I. Yukalov, Acta Phys. Pol. A 57, 295 (1980)

    Google Scholar 

  82. Z. Dutton, M. Budde, C. Slowe, L.V. Hau, Science 293, 663 (2001)

    ADS  Google Scholar 

  83. V.I. Yukalov, E.P. Yukalova, Laser Phys. Lett. 1, 50 (2004)

    ADS  Google Scholar 

  84. J. Ruostekoski, Z. Dutton, Phys. Rev. A 72, 063626 (2005)

    ADS  Google Scholar 

  85. I. Shomroni, E. Lahoud, S. Levy, J. Steinhauer, Nat. Phys. 5, 193 (2009)

    Google Scholar 

  86. M. Ma, R. Carretero-Gonzalez, P.G. Kevrekidis, D.J. Frantzeskakis, B.A. Malomed, Phys. Rev. A 82, 023621 (2010)

    ADS  Google Scholar 

  87. S. Ishiro, M. Tsubota, H. Takeuchi, Phys. Rev. A 83, 063602 (2011)

    ADS  Google Scholar 

  88. T.P. Simula, Phys. Rev. A 84, 021603 (2011)

    ADS  Google Scholar 

  89. J.R. Abo-Shaeer, C. Raman, J.M. Vogels, W. Ketterle, Science 292, 476 (2001)

    ADS  Google Scholar 

  90. E.A.L. Henn, J.A. Seman, E.R.F. Ramos, M. Caracanhas, P. Castilho, E.P. Olimpio, G. Roati, D.V. Magalhães, K.M.F. Magalhães, V.S. Bagnato, Phys. Rev. A 79, 043618 (2009)

    ADS  Google Scholar 

  91. J.A. Seman, E.A.L. Henn, M. Haque, R.F. Shiozaki, E.R.F. Ramos, M. Caracanhas, P. Castilho, C. Castelo Branco, P.E.S. Tavares, F.J. Poveda-Cuevas, G. Roati, K.M.F. Magalhães, V.S. Bagnato, Phys. Rev. A 82, 033616 (2010)

    ADS  Google Scholar 

  92. J.A. Seman, Thesis (University of São Paulo, São Carlos, 2011)

    Google Scholar 

  93. R.P. Feynman, Prog. Low Temp. Phys. 1, 17 (1955)

    Google Scholar 

  94. P.A. Davidson, Turbulence: Introduction for Scientists and Engineers (Oxford University, Oxford, 2004)

    Google Scholar 

  95. R. Donnelly, C. Swanson, J. Fluid Mech. 173, 387 (1986)

    ADS  Google Scholar 

  96. A.N. Kolmogorov, Proc. USSR Acad. Sci. 30, 299 (1941)

    Google Scholar 

  97. A.N. Kolmogorov, Proc. USSR Acad. Sci. 32, 16 (1941)

    MATH  Google Scholar 

  98. K. Sreenivasan, Phys. Fluids 7, 2778 (1995)

    ADS  MATH  MathSciNet  Google Scholar 

  99. H.E. Hall, W.F. Vinen, Proc. R. Soc. Lond. A 238, 204 (1956)

    ADS  Google Scholar 

  100. W.F. Vinen, Proc. R. Soc. Lond. A 243, 400 (1958)

    ADS  Google Scholar 

  101. J. Maurer, P. Tabeling, Eur. Phys. Lett. 43, 29 (1998)

    ADS  Google Scholar 

  102. S.R. Stalp, L. Skrbek, R.J. Donnelly, Phys. Rev. Lett. 82, 4831 (1999)

    ADS  Google Scholar 

  103. B.V. Svistunov, Phys. Rev. B 52, 3647 (1995)

    ADS  Google Scholar 

  104. M. Kobayashi, M. Tsubota, J. Phys. Soc. Jpn 74, 3248 (2005)

    ADS  MATH  Google Scholar 

  105. C.F. Barenghi, R.J. Donnelly, W.F. Vinen, Quantized Vortex Dynamics and Superfluid Turbulence (Springer, New York, 2001)

    MATH  Google Scholar 

  106. W.F. Vinen, J.J. Niemela, J. Low Temp. Phys. 128, 167 (2002)

    ADS  Google Scholar 

  107. V.I. Yukalov, Laser Phys. Lett. 7, 467 (2010)

    ADS  Google Scholar 

  108. B. Nowak, J. Schole, D. Sexty, T. Gasenzer, Phys. Rev. A 85, 043627 (2012)

    ADS  Google Scholar 

  109. M. Kobayashi, M. Tsubota, Phys. Rev. A 76, 045603 (2007)

    ADS  Google Scholar 

  110. M. Tsubota, J. Phys. Condens. Matt. 21, 164207 (2009)

    ADS  Google Scholar 

  111. E.A.L. Henn, J.A. Seman, G. Roati, K.M.F. Magalhães, V.S. Bagnato, Phys. Rev. Lett. 103, 045301 (2009)

    ADS  Google Scholar 

  112. J.A. Seman, R.F. Shiozaki, F.J. Poveda-Cuevas, E.A.L. Henn, K.M.F. Magalhães, G. Roati, G.D. Telles, V.S. Bagnato, J. Phys. Conf. Ser. 264, 012004 (2011)

    Google Scholar 

  113. R.F. Shiozaki, G.D. Telles, V.I. Yukalov, V.S. Bagnato, Laser Phys. Lett. 8, 393 (2011)

    ADS  Google Scholar 

  114. J.A. Seman, E.A.L. Henn, R.F. Shiozaki, G. Roati, F.J. Poveda-Cuevas, K.M.F. Magalhães, V.I. Yukalov, M. Tsubota, M. Kobayashi, K. Kasamatsu, V.S. Bagnato, Laser Phys. Lett. 8, 691 (2011)

    Google Scholar 

  115. V.I. Yukalov, E.P. Yukalova, V.S. Bagnato, Laser Phys. 19, 686 (2009)

    ADS  Google Scholar 

  116. R. Graham, A. Pelster, Int. J. Bifurc. Chaos. 19, 2745 (2009)

    MATH  Google Scholar 

  117. C. Gaul, C.A. Müller, Phys. Rev. A 83, 063629 (2011)

    ADS  Google Scholar 

  118. V.I. Yukalov, R. Graham, Phys. Rev. A 75, 023619 (2007)

    ADS  Google Scholar 

  119. V.I. Yukalov, E.P. Yukalova, K.V. Krutitsky, R. Graham, Phys. Rev. A 76, 053623 (2007)

    ADS  Google Scholar 

  120. V.I. Yukalov, Int. J. Mod. Phys. 17, 2333 (2003)

    ADS  MathSciNet  Google Scholar 

  121. V.I. Yukalov, E.P. Yukalova, Laser Phys. 21, 1448 (2011)

    ADS  Google Scholar 

  122. V.N. Tsytovich, Theory of Turbulent Plasma (Consultant Bureau, New York, 1977)

    Google Scholar 

  123. S. Dyachenko, A.C. Newell, A. Pushkarev, V.E. Zakharov, Physica D 57, 96 (1992)

    ADS  MATH  MathSciNet  Google Scholar 

  124. S. Galtier, S.N. Nazarenko, A.C. Newell, A. Pouquet, J. Plasma Phys. 63, 447 (2000)

    ADS  Google Scholar 

  125. N.G. Berloff, B.V. Svistunov, Phys. Rev. A 66, 013603 (2002)

    ADS  Google Scholar 

  126. Y. Lvov, S. Nazarenko, R. West, Physica D 184, 333 (2003)

    ADS  MATH  MathSciNet  Google Scholar 

  127. V. Zakharov, F. Dias, A. Pushkarev, Phys. Rep. 398, 1 (2004)

    ADS  MathSciNet  Google Scholar 

  128. C. Raman, Phys. Rev. Lett. 87, 210402 (2001)

    ADS  Google Scholar 

  129. K.W. Madison, F. Chevy, W. Wohlleben, J. Dalibard, J. Mod. Opt. 47, 2715 (2000)

    ADS  Google Scholar 

  130. O.M. Marago, S.A. Hopkins, J. Arlt, E. Hodby, G. Hechenblaikner, C.J. Foot, Phys. Rev. Lett. 84, 2056 (2000)

    ADS  Google Scholar 

  131. P.E.S. Tavares, Thesis (University of São Paulo, São Carlos, 2011)

    Google Scholar 

  132. M. Tsubota, S.I. Ogawa, Y. Hattori, J. Low Temp. Phys. 121, 435 (2000)

    ADS  Google Scholar 

  133. M. Caracanhas, A.L. Fetter, S.R. Muniz, K.M.F. Magalhães, G. Roati, G. Bagnato, V.S. Bagnato, J. Low Temp. Phys. 166, 49 (2012)

    ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to all our co-authors for collaboration. One of the authors (V.I.Y.) acknowledges financial support from the Russian Foundation for Basic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Yukalov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bagnato, V.S., Yukalov, V.I. (2012). From Coherent Modes to Turbulence and Granulation of Trapped Gases. In: Malomed, B. (eds) Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations. Progress in Optical Science and Photonics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10091_2012_14

Download citation

  • DOI: https://doi.org/10.1007/10091_2012_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21206-2

  • Online ISBN: 978-3-642-21207-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics