Skip to main content

Existence, Stability and Nonlinear Dynamics of Vortices and Vortex Clusters in Anisotropic Bose-Einstein Condensates

  • Chapter
  • First Online:
Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 1))

Abstract

This chapter is devoted to the study of vortex excitations in one-component Bose-Einstein condensates, with a special emphasis on the impact of anisotropic confinement on the existence, stability and dynamical properties of vortices and particularly few-vortex clusters. Symmetry breaking features are pervasive within this system even in its isotropic installment, where cascades of symmetry breaking bifurcations give rise to the multi-vortex clusters, but also within the anisotropic realm which naturally breaks the rotational symmetry of the multi-vortex states. Our first main tool for analyzing the system consists of a weakly nonlinear (bifurcation) approach which starts from the linear states of the problem and examines their continuation and bifurcation into novel symmetry-broken configurations in the nonlinear case. This is first done in the isotropic limit and the modifications introduced by the anisotropy are subsequently presented. The second main tool concerns the highly nonlinear regime where the vortices can be considered as individual topologically charged "particles" which precess within the parabolic trap and interact with each other, similarly to fluid vortices. The conclusions stemming from both the bifurcation and the interacting particle picture are corroborated by numerical computations which are also used to bridge the gap between these two opposite-end regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The connection provided through the numerical results is often essential as some configurations may e.g. be stable in the above two limits but possess instabilities in finite intermediate ranges of parameter values that would not be observable by restricting our view to the analytically tractable limits. A notable example of this type is offered by the vortex quadrupole configuration (see e.g. Fig.  8 of [16] and equivalently the isotropic limit of both Fig. 10d and e below). Such a state is found to be linearly stable in both of the above quasi-analytical limits and its intermediate range of instability parameter values is only detected by the bridging numerical continuation.

References

  1. R.J. Donnelly, Quantized Vortices in Helium II (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  2. G. Blatter, M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin, V.M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994)

    Article  ADS  Google Scholar 

  3. Y.S. Kivshar, B. Luther-Davies, Phys. Rep. 298, 81 (1998)

    Article  ADS  Google Scholar 

  4. A. Desyatnikov, Y. Kivshar, L. Torner, Prog. Opt. 47, 291 (2005)

    Article  Google Scholar 

  5. L. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Clarendon Press, Oxford, 2003)

    MATH  Google Scholar 

  6. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2008)

    Book  Google Scholar 

  7. P.G. Kevrekidis, D.J. Frantzeskakis, R. Carretero-González, Emergent Nonlinear Phenomena in Bose-Einstein Condensates (Springer, Berlin, 2008)

    Book  MATH  Google Scholar 

  8. L.M. Pismen, Vortices in Nonlinear Fields (Clarendon Press, Oxford, 1999)

    MATH  Google Scholar 

  9. L.C. Crasovan, G. Molina-Terriza, J.P. Torres, L. Torner, V.M. Pérez-García, D. Mihalache, Phys. Rev. E 66, 036612 (2002)

    Article  ADS  Google Scholar 

  10. L.C. Crasovan, V. Vekslerchik, V.M. Pérez-García, J.P. Torres, D. Mihalache, L. Torner, Phys. Rev. A 68, 063609 (2003)

    Article  ADS  Google Scholar 

  11. J. Brand, W.P. Reinhardt, Phys. Rev. A 65, 043612 (2002)

    Article  ADS  Google Scholar 

  12. M. Möttönen, S.M.M. Virtanen, T. Isoshima, M.M. Salomaa, Phys. Rev. A 71, 033626 (2005)

    Article  ADS  Google Scholar 

  13. V. Pietilä, M. Möttönen, T. Isoshima, J.A.M. Huhtamäki, S.M.M. Virtanen, Phys. Rev. A 74, 023603 (2006)

    Article  ADS  Google Scholar 

  14. P. Kuopanportti, J.A.M. Huhtamäki, M. Möttönen, Phys. Rev. A 83, 011603 (2011)

    Article  ADS  Google Scholar 

  15. W. Li, M. Haque, S. Komineas, Phys. Rev. A 77, 053610 (2008)

    Article  ADS  Google Scholar 

  16. S. Middelkamp, P.G. Kevrekidis, D.J. Frantzeskakis, R. Carretero-González, P. Schmelcher, Phys. Rev. A 82, 013646 (2010)

    Article  ADS  Google Scholar 

  17. P. Torres, P. Kevrekidis, D. Frantzeskakis, R. Carretero-González, P. Schmelcher, D. Hall, Phys. Lett. A 375, 3044 (2011)

    Article  ADS  Google Scholar 

  18. T.W. Neely, E.C. Samson, A.S. Bradley, M.J. Davis, B.P. Anderson, Phys. Rev. Lett. 104, 160401 (2010)

    Article  ADS  Google Scholar 

  19. D.V. Freilich, D.M. Bianchi, A.M. Kaufman, T.K. Langin, D.S. Hall, Science 329, 1182 (2010)

    Article  ADS  Google Scholar 

  20. S. Middelkamp, P.J. Torres, P.G. Kevrekidis, D.J. Frantzeskakis, R. Carretero-González, P. Schmelcher, D.V. Freilich, D.S. Hall, Phys. Rev. A 84, 011605 (2011)

    Article  ADS  Google Scholar 

  21. S. Middelkamp, P. Kevrekidis, D. Frantzeskakis, R. Carretero-González, P. Schmelcher, Physica D 240, 1449 (2011)

    Article  ADS  Google Scholar 

  22. J.A. Seman, E.A.L. Henn, M. Haque, R.F. Shiozaki, E.R.F. Ramos, M. Caracanhas, P. Castilho, C. Castelo Branco, P.E.S. Tavares, F.J. Poveda-Cuevas, G. Roati, K.M.F. Magalhães, V.S. Bagnato, Phys. Rev. A 82, 033616 (2010)

    Article  ADS  Google Scholar 

  23. T. Mayteevarunyoo, B.A. Malomed, B.B. Baizakov, M. Salerno, Physica D 238, 1439 (2009)

    Article  ADS  MATH  Google Scholar 

  24. H. Sakaguchi, B. Malomed, Europhys. Lett. 72, 698 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  25. A.S. Desyatnikov, A.A. Sukhorukov, Y.S. Kivshar, Phys. Rev. Lett. 95, 203904 (2005)

    Article  ADS  Google Scholar 

  26. V.M. Lashkin, Phys. Rev. A 77, 025602 (2008)

    Article  ADS  Google Scholar 

  27. V.M. Lashkin, A.S. Desyatnikov, E.A. Ostrovskaya, Y.S. Kivshar, Phys. Rev. A 85, 013620 (2012)

    Article  ADS  Google Scholar 

  28. J. Stockhofe, S. Middelkamp, P.G. Kevrekidis, P. Schmelcher, Europhys. Lett. 93, 20008 (2011)

    Article  ADS  Google Scholar 

  29. S. McEndoo, T. Busch, Phys. Rev. A 79, 053616 (2009)

    Article  ADS  Google Scholar 

  30. S. McEndoo, T. Busch, Phys. Rev. A 82, 013628 (2010)

    Article  ADS  Google Scholar 

  31. N. Lo Gullo, T. Busch, M. Paternostro, Phys. Rev. A 83, 053612 (2011)

    Article  ADS  Google Scholar 

  32. T. Kapitula, P.G. Kevrekidis, B. Sandstede, Physica D 195, 263 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. D.V. Skryabin, Phys. Rev. A 63, 013602 (2000)

    Article  ADS  Google Scholar 

  34. R.S. MacKay, J. Meiss, Hamiltonian Dynamical Systems (Hilger, Bristol, 1987)

    MATH  Google Scholar 

  35. A.L. Fetter, A.A. Svidzinsky, J. Phys.: Cond. Matt. 13, R135 (2001)

    ADS  Google Scholar 

  36. A.A. Svidzinsky, A.L. Fetter, Phys. Rev. Lett. 84, 5919 (2000)

    Article  ADS  Google Scholar 

  37. S. Middelkamp, P.G. Kevrekidis, D.J. Frantzeskakis, R. Carretero-González, P. Schmelcher, J. Phys. B 43, 155303 (2010)

    Article  ADS  Google Scholar 

  38. P.G. Kevrekidis, R. Carretero-González, D.J. Frantzeskakis, I.G. Kevrekidis, Mod. Phys. B 18, 1481 (2004)

    Article  ADS  MATH  Google Scholar 

  39. P.K. Newton, G. Chamoun, Siam Review 51, 501 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. M.S. Jean, C. Even, C. Guthmann, Europhys. Lett. 55, 45 (2001)

    Article  ADS  Google Scholar 

  41. S.W.S. Apolinario, B. Partoens, F.M. Peeters, Phys. Rev. E 72, 046122 (2005)

    Article  ADS  Google Scholar 

  42. C.T. Kelley, Solving Nonlinear Equations with Newton’s Method (Society for Industrial and Applied Mathematics, Philadelphia, 2003)

    Book  MATH  Google Scholar 

  43. D.L. Feder, A.A. Svidzinsky, A.L. Fetter, C.W. Clark, Phys. Rev. Lett. 86, 564 (2001)

    Article  ADS  Google Scholar 

  44. B. Nowak, J. Schole, D. Sexty, T. Gasenzer, Phys. Rev. A 85, 043627 (2012)

    Article  ADS  Google Scholar 

  45. D.J. Frantzeskakis, J. Phys. A 43, 213001 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  46. G. Theocharis, P.G. Kevrekidis, D.J. Frantzeskakis, P. Schmelcher, Phys. Rev. E 74, 056608 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  47. D. Mihalache, D. Mazilu, B.A. Malomed, F. Lederer, Phys. Rev. A 73, 043615 (2006)

    Article  ADS  Google Scholar 

  48. T. Kapitula, P. Kevrekidis, R. Carretero-González, Physica D 233, 112 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  49. H. Pu, C.K. Law, J.H. Eberly, N.P. Bigelow, Phys. Rev. A 59, 1533 (1999)

    Article  ADS  Google Scholar 

  50. Y. Shin, M. Saba, M. Vengalattore, T.A. Pasquini, C. Sanner, A.E. Leanhardt, M. Prentiss, D.E. Pritchard, W. Ketterle, Phys. Rev. Lett. 93, 160406 (2004)

    Article  ADS  Google Scholar 

  51. G. Theocharis, D.J. Frantzeskakis, P.G. Kevrekidis, B.A. Malomed, Y.S. Kivshar, Phys. Rev. Lett. 90, 120403 (2003)

    Article  ADS  Google Scholar 

  52. K.J.H. Law, P.G. Kevrekidis, L.S. Tuckerman, Phys. Rev. Lett. 105, 160405 (2010)

    Article  ADS  Google Scholar 

  53. B.P. Anderson, P.C. Haljan, C.A. Regal, D.L. Feder, L.A. Collins, C.W. Clark, E.A. Cornell, Phys. Rev. Lett. 86, 2926 (2001)

    Article  ADS  Google Scholar 

  54. N.S. Ginsberg, J. Brand, L.V. Hau, Phys. Rev. Lett. 94, 040403 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Schmelcher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stockhofe, J., Kevrekidis, P.G., Schmelcher, P. (2012). Existence, Stability and Nonlinear Dynamics of Vortices and Vortex Clusters in Anisotropic Bose-Einstein Condensates. In: Malomed, B. (eds) Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations. Progress in Optical Science and Photonics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10091_2012_10

Download citation

  • DOI: https://doi.org/10.1007/10091_2012_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21206-2

  • Online ISBN: 978-3-642-21207-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics