Skip to main content

Automated Cutting of Natural Products: A Practical Packing Strategy

  • Chapter
Machine Vision for the Inspection of Natural Products

11.8 Conclusion

The work outlined in this chapter was motivated by the need to produce a new generation of flexible packing/cutting systems. The approach adopted is capable of implementing efficient packing strategies, with no prior knowledge of the shapes to be packed or the scenes into which the shapes were to be placed. Automated packing systems have a wide range of possible industrial applications, including flexible assembly and automated cutting systems.

The strengths of the adopted approach become more evident when the systems issues of a specific application are considered. The packing system outlined has the ability to deal with a range of such issues. These include the ability to pack shapes into defective regions. This is not a trivial task for a human operator. Other issues that must be considered include the ability of the automated packing procedure to control the spacing between packed items in a consistent manner. This is a task that manual operators would find difficult, especially for irregular shapes about which they had no prior information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

11.9 References

  1. Dreyfus H.L. and Dreyfus S.E. (1986) Mind over Machine, The Free Press.

    Google Scholar 

  2. Whelan P.F. and Batchelor B.G. (1993) Flexible packing of arbitrary two-dimensional shapes, Optical Engineering, 32(12), 3278–3287.

    Article  Google Scholar 

  3. Whelan P.F. and Batchelor B.G. (1996) Automated packing systems — a systems engineering approach, IEEE Trans. on Systems, Man and Cybernetics — Part A: Systems and Humans, 26(05), 533–544.

    Article  Google Scholar 

  4. Stewart I. (1991) How to succeed in stacking, New Scientist, July, 29–32.

    Google Scholar 

  5. Stewart I. (1992) Has the sphere packing problem been solved?, New Scientist, May.

    Google Scholar 

  6. Hinrichsen E.L., Feder J., Jossang T. (1990) Random packing of disks in two dimensions, Physical Review A, vol. 41,no. 8, 4199–4209.

    Article  Google Scholar 

  7. Dowsland W.B. (1985) Two and three dimensional packing problems and solution methods, New Zealand Operational Research, vol. 13,no. 1, 1–18.

    MathSciNet  Google Scholar 

  8. Sweeney P.E., Paternoster E.R. (1992) Cutting and packing problems: A categorized, application-orientated research bibliography, Journal of the Operational Research Society, vol. 43,no. 7, 691–706.

    MATH  Google Scholar 

  9. Dowsland K.A., Dowsland W.B. (1992) Packing problems, European Journal of Operational Research, vol. 56, 2–14.

    Article  MATH  Google Scholar 

  10. Wolfson H., Schonberg E., Kalvin A., Lamdan Y. (1988) Solving jigsaw puzzles by computer, Annals of Operations Research, vol. 12, 51–64.

    Article  MathSciNet  Google Scholar 

  11. Burdea G.C. and Wolfson H.J. (1989) Solving jigsaw puzzles by a robot, Proc. IEEE Trans. on Robotics and Automation, vol. 5,no. 6, 752–764.

    Article  Google Scholar 

  12. Oh S.R., Lee J.H., Kim K.J., Bien Z. (1985) An intelligent robot system with jigsaw-puzzle matching capability, Proc. 15’th Int. Symp. On Industrial Robots (Tokyo), pp. 103–112.

    Google Scholar 

  13. Batchelor B.G. (1991) Intelligent Image Processing in Prolog, Springer-Verlag, London.

    MATH  Google Scholar 

  14. Dori D., Ben-Bassat M. (1984) Efficient nesting of congruent convex figures, Communications of the ACM, vol. 27,no. 3, 228–235.

    Article  MathSciNet  Google Scholar 

  15. Brown A.R. (1971) Optimum Packing and Depletion: The Computer in Space-and Resource-Usage Problems, American Elsevier Publishing.

    Google Scholar 

  16. Ong H.L., Magazine M.J., Wee T.S. (1984) Probabilistic analysis of bin packing Heuristics, Operations Research, vol. 32,no. 5, pp. 983–998.

    MathSciNet  MATH  Google Scholar 

  17. Hofri M. (1982) Bin packing: an analysis of the next-fit algorithm, Technical Report #242, Israel Institute of Technology.

    Google Scholar 

  18. Chandra A.K., Hirschberg D.S., Wong C.K. (1978) Bin packing with geometric constraints in computer network design, Operations Research, 26(5), 760–772.

    MathSciNet  MATH  Google Scholar 

  19. Prasad Y.K.D.V, Somasundaram S. (1991) CASNS — A heuristic algorithm for the nesting of irregular-shaped sheet-metal blanks, Computer-Aided Engineering Journal, 8(2), 69–73.

    Article  Google Scholar 

  20. Dulio S. (1990) Application of automation technology to leather cutting, Proceedings of the 23rd International Symposium on Automotive Technology and Automation, pp. 83–96.

    Google Scholar 

  21. Chetverikov D., Lerch A. (1992) Prototype machine vision system for segmentation of hide images, International Journal of Imaging Systems and Technology, 4(1), 46–50.

    Google Scholar 

  22. Cuninghame-Green R. (1989) Geometry, shoemaking and the Milk Tray problem, New Scientist, (12 Aug), 50–53.

    Google Scholar 

  23. Dyckhoff H. (1990) A typology of cutting and packing problems, European Journal of Operational Research, vol. 44, pp. 145–159.

    Article  MATH  MathSciNet  Google Scholar 

  24. Carpenter H., Dowsland W.B. (1985) Practical considerations of the pallet-loading problem, J. Operational. Res. Soc., vol. 36,no. 6, pp. 489–497.

    MATH  Google Scholar 

  25. Chen C.S., Sarin S., Ram B. (1991) The pallet packing problem for nonuniform box sizes, International Journal of Production Research, vol. 29,no. 10, 1963–1968.

    MATH  Google Scholar 

  26. Chuang F.R.K., Garey M.R., Johnson D.S. (1982) On packing two-dimensional bins, SIAM J. Alg. Disc. Meth., vol. 3,no. 1, 66–76.

    Google Scholar 

  27. Baker B.S., Coffman E.G., Rivest R.L. (1980) Orthogonal packing in two dimensions, SIAM J. Comput., vol. 9,no. 4, 846–855.

    Article  MathSciNet  MATH  Google Scholar 

  28. Bischoff E.E., Marriott M.D. (1990) A comparative evaluation of heuristics for container loading, European Journal of Operational Research, vol. 44, 267–276.

    Article  MATH  Google Scholar 

  29. Hall E., Shell R., Slutzky G. (1990) Intelligent packing and material handling, Proc. SPIE Intelligent Robots and Computer Vision IX: Algorithms and Techniques, vol. 1381, 162–170.

    Google Scholar 

  30. Wilson R.C. (1965) A packaging problem, Management Science, vol. 12,no. 4, B135–B145.

    Article  Google Scholar 

  31. Bischoff E.E. (1989) Interactive approaches to packing problems, 10th ICPR, pp. 55–61.

    Google Scholar 

  32. Qu W., Sanders J.L. (1987) A nesting algorithm for irregular parts and factors affecting trim losses, Int. J. Prod. Res., vol. 25,no. 3, 381–397.

    Google Scholar 

  33. Chazelle B. (1983) The polygon containment problem, Advances in Computing Research, vol. 1, 1–33.

    Google Scholar 

  34. Koroupi F., Loftus M. (1991) Accommodating diverse shapes within hexagonal pavers, Int. J. Prod. Res., vol. 29,no. 8, 1507–1519.

    Google Scholar 

  35. Martin R.R., Stephenson P.C. (1988) Putting objects into boxes, Computer-Aided Design, vol. 20,no. 9, 506–514.

    Article  Google Scholar 

  36. Chow W.W. (1980) The packing of a template on a flat surface, Trans. of the ASME — Journal of Mechanical Design, vol. 102, 490–496.

    Article  Google Scholar 

  37. Kothari R., Klinkhachorn P. (1989) Packing of convex polygons in a rectangularly bounded, non-homogeneous space, IEEE Proc. of 21st Southeastern Symp. on System Theory, pp. 200–203.

    Google Scholar 

  38. Albano A., Sapuppo G. (1980) Optimal allocation of two-dimensional irregular shapes using heuristic search methods, IEEE Transactions on Systems, Man, and Cybernetics, vol. 10,no. 5, pp. 242–248.

    Article  Google Scholar 

  39. Vincent L. (1991) Morphological transformations of binary images with arbitrary structuring elements, Signal Processing, vol. 22, pp. 3–23.

    Article  Google Scholar 

  40. Silver E.A., Vidal R.V.V., De Werra D. (1980) A tutorial on heuristic methods, European Journal of Operational Research 5, 153–162.

    Article  MathSciNet  Google Scholar 

  41. Dougherty E.R. (1992) An Introduction to Morphological Image Processing, Tutorial Text TT9, SPIE Press.

    Google Scholar 

  42. Whelan P.F., Molloy D. (2000) Machine Vision Algorithms in Java: Techniques and Implementation, Springer, London.

    Google Scholar 

  43. Haralick R.M., Shapiro L.G. (1992) Mathematical morphology, Chapter 5 of Computer and Robot Vision: Volume 1, Addison-Wesley.

    Google Scholar 

  44. Whelan P.F., Batchelor B.G. (1992) Development of a vision system for the flexible packing of random shapes, in Machine Vision Applications, Architectures, and Systems Integration, Proc. SPIE, vol. 1823, 223–232.

    Google Scholar 

  45. Whelan P.F., Batchelor B.G. (1993) Automated packing systems: Review of industrial implementations, Machine Vision Applications, Architectures, and Systems Integration II, Proc. SPIE, vol. 2064, 358–369.

    Google Scholar 

  46. Fowler R., Paterson M., Tanimoto S. (1981) Optimal packing and covering in the plane are NP complete, Inf. Proc. Letters, vol. 12,no. 3, 133–137.

    Article  MathSciNet  MATH  Google Scholar 

  47. Garey M.R., Johnson D.S. (1979) Computers and Intractability — A Guide to the Theory of NP-Completeness, W.H. Freeman and Co.

    Google Scholar 

  48. EUREKA (1989) Robotics and Production Automation, European Community.

    Google Scholar 

  49. Dulio S. (1992), Private communication.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag London Limited

About this chapter

Cite this chapter

Whelan, P.F. (2003). Automated Cutting of Natural Products: A Practical Packing Strategy. In: Graves, M., Batchelor, B. (eds) Machine Vision for the Inspection of Natural Products. Springer, London. https://doi.org/10.1007/1-85233-853-9_11

Download citation

  • DOI: https://doi.org/10.1007/1-85233-853-9_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-525-0

  • Online ISBN: 978-1-85233-853-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics