Skip to main content

Design of control Lyapunov functions for “Jurdjevic-Quinn” systems

  • Conference paper
  • First Online:
Stability and Stabilization of Nonlinear Systems

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 246))

Abstract

This paper presents briefly a method to design explicit control Lyapunov functions for control systems that satisfy the so-called “Jurdjevic-Quinn conditions”, i.e. posses an “energy-like” function that is naturally non-increasing for the un-forced system. The results with proof will appear in a future paper. The present note rather focuses on the method, and on its application to the model of a mechanical system, the translational oscillator with rotation actuator (TORA) (also known as RTAC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Z. Artstein, Stabilization with relaxed control, Nonlinear Analysis TMA, 7 (1983), pp. 1163–1173.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Bacciotti, Local stabilizability of nonlinear control systems, vol. 8 of Series on advances in mathematics for applied sciences, World Scientific, Singapore, River Edge, London, 1992.

    Google Scholar 

  3. D. S. Bernstein, ed., Special Issue: A Nonlinear Benchmark Problem, Int. J. of Robust & Nonlinear Cont., 8 (1998), No 4–5.

    Google Scholar 

  4. R. W. Brockett, Finite Dimensional Linear Systems, John Wiley and sons, New York, London, Sydney, Toronto, 1970.

    MATH  Google Scholar 

  5. R. T. Bupp, D. S. Bernstein, and V. T. Coppola, A benchmark problem for nonlinear control design, Int. J. Robust & Nonlinear Cont., 8 (1998), pp. 307–310.

    Article  MathSciNet  Google Scholar 

  6. J.-M. Coron, L. Praly, and A. R. Teel, Feedback stabilization of nonlinear system: Sufficient conditions and Lyapunov and input-output techniques, in Trends in Control, a European Perspective, A. Isidori, ed., Springer-Verlag, 1995.

    Google Scholar 

  7. L. Faubourg and J.-B. Pomet, Strict control Lyapunov functions for homogeneous Jurdjevic-Quinn type systems, in Nonlinear Control Systems Design Symposium (NOLCOS’98), H. Huijberts, H. Nijmeijer, A. van der Schaft, and J. Scherpen, eds., IFAC, July 1998, pp. 823–829.

    Google Scholar 

  8. L. Faubourg and J.-B. Pomet, Under preparation, 1999.

    Google Scholar 

  9. R. A. Freeman and P. V. Kokotovic, Inverse optimality in robust stabilization., SIAM J. on Control and Optim., 34 (1996), pp. 1365–1391.

    Article  MATH  MathSciNet  Google Scholar 

  10. J.-P. Gauthier, Structure des Systèmes non-linéaires, Éditions du CNRS, Paris, 1984.

    MATH  Google Scholar 

  11. S. T. Glad, Robustness of nonlinear state feedback-a survey, Automatica, 23 (1987), pp. 425–435.

    Article  MATH  Google Scholar 

  12. W. Hahn, Stability of Motion, vol. 138 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, New-York, 1967.

    Google Scholar 

  13. V. Jurjevic and J. P. Quinn, Controllability and stability, J. of Diff. Equations, 28 (1978), pp. 381–389.

    Article  Google Scholar 

  14. M. Kawski, Homogeneous stabilizing feedback laws, Control Th. and Adv. Technol., 6 (1990), pp. 497–516.

    MathSciNet  Google Scholar 

  15. J. Kurzweil, On the inversion of Ljapunov’s second theorem on stability of motion, A.M.S. Translations, ser. II,24 (1956), pp. 19–77.

    Google Scholar 

  16. J.-P. LaSalle, Stability theory for ordinary differential equations, J. of Diff. Equations, 4 (1968), pp. 57–65.

    Article  MATH  MathSciNet  Google Scholar 

  17. R. Outbib and G. Sallet, Stabilizability of the angular velocity of a rigid body revisited, Syst. & Control Lett., 18 (1992), pp. 93–98.

    Article  MATH  MathSciNet  Google Scholar 

  18. L. Praly and Y. Wang, Stabilization in spite of matched un-modeled dynamics and equivalent definition of input-to-state stability., Math. of Control, Signals & Systems, 9 (1996), pp. 1–33.

    Article  MATH  MathSciNet  Google Scholar 

  19. R. Sépulchre, M. Janković, and P. V. Kokotović, Constructive Nonlinear Control, Comm. and Control Engineering, Springer-Verlag, 1997.

    Google Scholar 

  20. E. D. Sontag, Feedback stabilization of nonlinear systems, in Robust control of linear systems and nonlinear control (vol. 2 of proceedings of MTNS’89), M. A. Kaashoek, J. H. van Schuppen, and A. Ran, eds., Basel-Boston, 1990, Birkhäuser, pp. 61–81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London Limited

About this paper

Cite this paper

Faubourg, L., Pomet, JB. (1999). Design of control Lyapunov functions for “Jurdjevic-Quinn” systems. In: Aeyels, D., Lamnabhi-Lagarrigue, F., van der Schaft, A. (eds) Stability and Stabilization of Nonlinear Systems. Lecture Notes in Control and Information Sciences, vol 246. Springer, London. https://doi.org/10.1007/1-84628-577-1_7

Download citation

  • DOI: https://doi.org/10.1007/1-84628-577-1_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-638-7

  • Online ISBN: 978-1-84628-577-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics