Skip to main content

Part of the book series: Advanced Information and Knowledge Processing ((AI&KP))

Summary

Graphs are a major tool for modeling objects with complex data structures. Devising learning algorithms that are able to handle graph representations is thus a core issue in knowledge discovery with complex data. While a significant amount of recent research has been devoted to inducing functions on the vertices of the graph, we concentrate on the task of inducing a function on the set of graphs. Application areas of such learning algorithms range from computer vision to biology and beyond. Here, we present a number of results on extending kernel methods to complex data, in general, and graph representations, in particular. With the very good performance of kernel methods on data that can easily be embedded in a Euclidean space, kernel methods have the potential to overcome some of the major weaknesses of previous approaches to learning from complex data. In order to apply kernel methods to graph data, we propose two different kernel functions and compare them on a relational reinforcement learning problem and a molecule classification problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borgelt, C. and M. R. Berthold, 2002: Mining molecular fragments: Finding relevant substructures of molecules. Proc. of the 2002 IEEE International Conference on Data Mining, IEEE Computer Society.

    Google Scholar 

  2. Boser, B. E., I. M. Guyon and V. N. Vapnik, 1992: A training algorithm for optimal margin classifiers. Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, D. Haussler, ed., ACM Press, 144–52.

    Google Scholar 

  3. Bunke, H. and G. Allerman, 1983: Inexact graph matching for structural pattern recognition. Pattern Recognition Letters, 4.

    Google Scholar 

  4. Collins, M. and N. Duffy, 2002: Convolution kernels for natural language. Advances in Neural Information Processing Systems, T. G. Dietterich, S. Becker and Z. Ghahramani, eds., MIT Press, 14.

    Google Scholar 

  5. Cortes, C., P. Haffner and M. Mohri, 2003: Positive definite rational kernels. Proceedings of the 16th Annual Conference on Computational Learning Theory and the 7th Kernel Workshop.

    Google Scholar 

  6. Deshpande, M., M. Kuramochi and G. Karypis, 2002: Automated approaches for classifying structures. Proceedings of the 2nd ACM SIGKDD Workshop on Data Mining in Bioinformatics.

    Google Scholar 

  7. — 2003: Frequent sub-structure based approaches for classifying chemical compounds. Proc. of the 2003 IEEE International Conference on Data Mining, IEEE Computer Society.

    Google Scholar 

  8. Dietterich, T. G., R. H. Lathrop and T. Lozano-Pérez, 1997: Solving the multiple instance problem with axis-parallel rectangles. Artificial Intelligence, 89, 31–71.

    Article  Google Scholar 

  9. Driessens, K. and S. Džeroski, 2002: Integrating experimentation and guidance in relational reinforcement learning. Proceedings of the 19th International Conference on Machine Learning, C. Sammut and A. Hoffmann, eds., Morgan Kaufmann, 115–22. URL: www.cs.kuleuven.ac.be/cgi-bin-dtai/publ info.pl?id=38637

    Google Scholar 

  10. Driessens, K., J. Ramon and H. Blockeel, 2001: Speeding up relational reinforcement learning through the use of an incremental first order decision tree learner. Proceedings of the 13th European Conference on Machine Learning, L. De Raedt and P. Flach, eds., Springer-Verlag, Lecture Notes in Artificial Intelligence, 2167, 97–108.

    Google Scholar 

  11. Džeroski, S., L. De Raedt and H. Blockeel, 1998: Relational reinforcement learning. Proceedings of the 15th International Conference on Machine Learning, Morgan Kaufmann, 136–43.

    Google Scholar 

  12. Eiter, T. and H. Mannila, 1997: Distance measures for point sets and their computation. Acta Informatica, 34.

    Google Scholar 

  13. Fischer, R. and M. Fischer, 1974: The string-to-string correction problem. Journal of the Association for Computing Machinery, 21.

    Google Scholar 

  14. FĂĽrer, M., 1995: Graph isomorphism testing without numerics for graphs of bounded eigenvalue multiplicity. Proceedings of the 6th Annual ACMSIAM Symposium on Discrete Algorithms.

    Google Scholar 

  15. Gärtner, T., 2002: Exponential and geometric kernels for graphs. NIPS Workshop on Unreal Data: Principles of Modeling Nonvectorial Data.

    Google Scholar 

  16. — 2003: A survey of kernels for structured data. SIGKDD Explorations.

    Google Scholar 

  17. Gärtner, T., K. Driessens and J. Ramon, 2003: Graph kernels and Gaussian processes for relational reinforcement learning. Proceedings of the 13th International Conference on Inductive Logic Programming.

    Google Scholar 

  18. Gärtner, T., P. A. Flach and S. Wrobel, 2003: On graph kernels: Hardness results and efficient alternatives. Proceedings of the 16th Annual Conference on Computational Learning Theory and the 7th Kernel Workshop.

    Google Scholar 

  19. Gärtner, T., J. W. Lloyd and P. A. Flach, 2004: Kernels for structured data. Machine Learning.

    Google Scholar 

  20. Geibel, P. and F. Wysotzki, 1996: Relational learning with decision trees. Proceedings of the 12th European Conference on Artificial Intelligence, W. Wahlster, ed., John Wiley, 428–32.

    Google Scholar 

  21. Graepel, T., 2002: PAC-Bayesian Pattern Classification with Kernels. Ph.D. thesis, TU Berlin.

    Google Scholar 

  22. Haussler, D., 1999: Convolution kernels on discrete structures. Technical report, Department of Computer Science, University of California at Santa Cruz.

    Google Scholar 

  23. Horvath, T., T. Gärtner and S. Wrobel, 2004: Cyclic pattern kernels for predictive graph mining. Proceedings of the International Conference on Knowledge Discovery and Data Mining.

    Google Scholar 

  24. Joachims, T., 1999: Making large-scale SVM learning practical. Advances in Kernel Methods: Support Vector Learning, B. Schölkopf, C. J. C. Burges and A. J. Smola, eds., MIT Press.

    Google Scholar 

  25. Kandola, J., J. Shawe-Taylor and N. Christianini, 2003: Learning semantic similarity. Advances in Neural Information Processing Systems, S. Becker, S. Thrun and K. Obermayer, eds., MIT Press, 15.

    Google Scholar 

  26. Kashima, H., and A. Inokuchi, 2002: Kernels for graph classification. ICDM Workshop on Active Mining.

    Google Scholar 

  27. Kashima, H., K. Tsuda and A. Inokuchi, 2003: Marginalized kernels between labeled graphs. Proceedings of the 20th International Conference on Machine Learning.

    Google Scholar 

  28. Kolmogorov, A. N., and S. V. Fomin, 1960: Elements of the Theory of Functions and Functional Analysis: Measure, Lebesgue Integrals, and Hilbert Space, Academic Press, NY, USA, 2.

    Google Scholar 

  29. Kondor, R. I. and J. Lafferty, 2002: Diffusion kernels on graphs and other discrete input spaces. Proceedings of the 19th International Conference on Machine Learning, C. Sammut and A. Hoffmann, eds., Morgan Kaufmann, 315–22.

    Google Scholar 

  30. Kramer, S., L. De Raedt and C. Helma, 2001: Molecular feature mining in HIV data. Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, F. Provost and R. Srikant, eds., 136–43.

    Google Scholar 

  31. Kuramochi, M. and G. Karypis, 2001: Frequent subgraph discovery. Proceedings of the IEEE International Conference on Data Mining.

    Google Scholar 

  32. Leslie, C., E. Eskin, J. Weston and W. Noble, 2003: Mismatch string kernels for SVM protein classification. Advances in Neural Information Processing Systems, S. Becker, S. Thrun and K. Obermayer, eds., MIT Press, 15.

    Google Scholar 

  33. Lloyd, J., 2003: Logic for Learning. Springer-Verlag.

    Google Scholar 

  34. Lodhi, H., J. Shawe-Taylor, N. Christianini and C. Watkins, 2001: Text classification using string kernels. Advances in Neural Information Processing Systems, T. Leen, T. Dietterich and V. Tresp, eds., MIT Press, 13.

    Google Scholar 

  35. MacKay, D. J. C., 1997: Introduction to Gaussian processes, available at http://wol.ra.phy.cam.ac.uk/mackay.

    Google Scholar 

  36. Messmer, B., 1995: Graph Matching Algorithms and Applications. Ph.D. thesis, University of Bern.

    Google Scholar 

  37. NCI HIV database. URL: http://cactus.nci.nih.gov/.

    Google Scholar 

  38. Read, R. C. and R. E. Tarjan, 1975: Bounds on backtrack algorithms for listing cycles, paths, and spanning trees. Networks, 5, 237–52.

    MathSciNet  Google Scholar 

  39. Rifkin, R. M., 2002: Everything Old is New Again: A fresh look at historical approaches to machine learning. Ph.D. thesis, MIT.

    Google Scholar 

  40. Saunders, C., A. Gammerman and V. Vovk, 1998: Ridge regression learning algorithm in dual variables. Proceedings of the 15th International Conference on Machine Learning, Morgan Kaufmann.

    Google Scholar 

  41. Schölkopf, B. and A. J. Smola, 2002: Learning with Kernels. MIT Press.

    Google Scholar 

  42. Smola, A. J. and R. Kondor, 2003: Kernels and regularization on graphs. Proceedings of the 16th Annual Conference on Computational Learning Theory and the 7th Kernel Workshop.

    Google Scholar 

  43. Sutton, R. and A. Barto, 1998: Reinforcement Learning: an introduction. MIT Press, Cambridge, MA.

    Google Scholar 

  44. Vapnik, V., 1995: The Nature of Statistical Learning Theory. Springer-Verlag.

    Google Scholar 

  45. Vishwanathan, S. and A. Smola, 2003: Fast kernels for string and tree matching. Advances in Neural Information Processing Systems, S. Becker, S. Thrun and K. Obermayer, eds., MIT Press, 15.

    Google Scholar 

  46. Watkins, C., 1989: Learning from Delayed Rewards. Ph.D. thesis, King’s College, Cambridge.

    Google Scholar 

  47. — 1999: Kernels from matching operations. Technical report, Department of Computer Science, Royal Holloway, University of London.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Dr Sanghamitra Bandyopadhyay

About this chapter

Cite this chapter

Gärtner, T. (2005). Predictive Graph Mining with Kernel Methods. In: Advanced Methods for Knowledge Discovery from Complex Data. Advanced Information and Knowledge Processing. Springer, London. https://doi.org/10.1007/1-84628-284-5_4

Download citation

  • DOI: https://doi.org/10.1007/1-84628-284-5_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-989-0

  • Online ISBN: 978-1-84628-284-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics