Skip to main content

Challenges to Advanced Materials Characterization for ULSI Applications

  • Chapter
Book cover Materials for Information Technology

Part of the book series: Engineering Materials and Processes ((EMP))

  • 1544 Accesses

Conclusion

The semiconductor industry has already entered the world of nanotechnology. The impact of nanodimensions on materials and device properties has driven the introduction of new materials such as low-k inter-level dielectrics. This change in dimension and properties has also resulted in the need to develop new materials characterization capabilities. In addition, it is important to note that materials characterization will continue to play a critical role in the development of new nanoelectronic technology and in manufacturing process control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.D. Hutchinson, The First Nanochips, Scientific American, April, 2004, p 48–55.

    Google Scholar 

  2. Semiconductor Industry Association (SIA), International Roadmap for Semiconductors 2003 and subsequent editions, Austin, TX: International SEMATECH, 2003. (This is available for printing and viewing from the Internet, with the following URL: http://public.itrs.net.)

    Google Scholar 

  3. P.E. Batson, N. Dellby and O.L. Krivanek, Sub-ångstrom resolution using aberration corrected electron optics, Nature 418, 617 (2002).

    Article  Google Scholar 

  4. P. Seidel, EUV Mask Blank Fabrication and Metrology, In: Characterization and Metrology for ULSI Technology 2003, edited by D.G. Seiler, A.C. Diebold, T.J. Shaffner, R. Mcdonald, S. Zollner, R.P. Khosla et al., AIP conference Proceedings 683, (AIP, New York, 2003), p 371–380.

    Google Scholar 

  5. H.G. Tompkins and W.A. McGahan, Thin Metal Films In: Spectroscopic Ellipsometry and Reflectometry, Wiley, New York, (1999), pp 181–187.

    Google Scholar 

  6. A.C. Diebold, P.Y. Hung, J. Price, B. Foran, H. Celio, and T. Kelly, Interface Characterization in the Semiconductor Industry, The 204th Electrochemical Society’s International Symposium on Interfaces in electronic materials (H1), 2003.

    Google Scholar 

  7. M. Kiene, M. Morgan, J-H Zhao, C. Hu, T. Cho, and P.S. Ho, Characterization of Low-Dielectric Constant Materials, In: Handbook of Silicon Semiconductor Metrology, edited by A.C. Diebold, Dekker, New York, (2001), pp 245–278.

    Google Scholar 

  8. B.G. Streetman and S. Banerjee, Solid State Electronic Devices, 5th edn, Prentice Hall, Upper Saddle River, (2000), pp 452–461.

    Google Scholar 

  9. T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass et al., A 90-nm High Volume Manufacturing Logic Technology Featuring Novel 45-nm Gate Length Strained Silicon CMOS Transistors, IEDM Tech. Digest 2003, pp 978–980.

    Google Scholar 

  10. V. Chan, R. Rengarajan, N. Rovedo, W. Jin, T. Hook, P. Nguyen et al., High Speed 45 nm Gate Length CMOSFETs incorporated into a 90 nm Bulk Technology Using Strain Engineering, IEDM Tech. Digest (2003), pp 77–80.

    Google Scholar 

  11. M.D. Giles, M. Armstrong, C. Auth, S.M. Cea, T. Ghani, T. Hoffmann et al., Understanding Stress Enhanced Performance in Intel 90nm CMOS Technology, 2004 Symposium on VLSI Technology Technical Digest of Papers, pp 118–119.

    Google Scholar 

  12. R.A. Bianchi, G. Bouche, and O. Roux-dit-Buisson, Accurate Modeling of Trench Isolation Induced Mechanical Stress Effects on MOSFET Electrical Performance, IEDM 2002 Tech. Digest, pp 117–120.

    Google Scholar 

  13. R. Khamankar, H. Bu, C. Bowen, S. Chakravarthi, P. R. Chidambaram, M. Bevan et al., An Enhanced 90nm High Performance Technology with Strong Performance Improvements from Stress and Mobility Increase through Simple Process Changes, pp 162–163.

    Google Scholar 

  14. Q. Xiang, J-S Goo, J. Pan, B. Yu, S. Ahmed, J. Zhang, and M.-R Lin, Strained Silicon NMOS with Nickel-Silicide Metal Gate, 2003 Symposium on VLSI Technology Digest of Technical Papers, pp 101–102.

    Google Scholar 

  15. M.V. Fischetti, F. Gamiz, and W. Hansch, On the Enhanced Electron Mobility in Strained-Silicon Inversion Layers, J. Appl. Phys. 92, 7320 (2002).

    Article  Google Scholar 

  16. M. Lundstrom and Z. Ren, Essential Physics of Carrier Transport in Nanoscale MOSFETs, IEEE Trans. on Electron. Devices 49, (2002), pp 133–141.

    Article  Google Scholar 

  17. P.M. Zeitzoff, J.A. Hutchby and H.R. Huff, MOSFET and Front-End Process Integration: Scaling Trends, Challenges, and Potential Solutions Through The End of The Roadmap, Int. J. High-Speed Electron. Syst., 12, 267–293 (2002).

    Article  Google Scholar 

  18. B. Doris, M. Ieong, T. Kanarsky, Y. Zhang, R.A. Roy, O. Dokumaci et al., Extreme Scaling with Ultra-Thin Si Channel MOSFETs, IEDM Techn. Digest 2002, pp 267–270.

    Google Scholar 

  19. B. Doris, M. Ieong, H. Zhu, Y. Zhang, M. Steen, W. Natzle et al., Device Design Considerations for Ultra-Thin SOI MOSFETs, IEDM Techn. Digest 2003, pp 631–634.

    Google Scholar 

  20. L.J. Allen, S.D. Findlay, A.R. Lupini, M.P. Oxley, and S.J. Pennycook, Atomic-Resolution Electron Energy Loss Spectroscopy Imaging in Aberration Corrected Scanning Transmission Electron Microscopy, Phys. Rev. Lett. 91, (2003), 105503 1–4.

    Article  Google Scholar 

  21. M. Varela, S.D. Findlay, A.R. Lupini, H.M. Christen, A.Y. Borisevich, N. Dellby et al., Spectroscopic Imaging of Single AtomsWithin a Bulk Solid, Phys. Rev. Letters 92, (2004) 95502 1–4.

    Article  Google Scholar 

  22. S. Wang, A.Y. Borisevich, S.N. Rashkeev, M.V. Glazoff, K. Sohlberg, S.J. Pennycook et al., Dopants adsorbed as single atoms prevent degradation of catalysts, Nature Mat. 3, (2004), p 143–146.

    Article  MATH  Google Scholar 

  23. S.J. Pennycook, A.R. Lupini, A. Borisevich, Y. Peng and N. Shibata, 3D Atomic Resolution Imaging through Aberration-Corrected STEM, Microsc. and Microanal. (2004), p 1172 CD.

    Google Scholar 

  24. C.-L. Jia, M. Lentzen, and K. Urban, High-Resolution Transmission Electron Microscopy Using Negative Spherical Aberration, Microsc. Microanal. 10, 174–184, (2004).

    Article  Google Scholar 

  25. M. Mukai, T. Kaneyama, T. Tomita, K. Tsuno, M. Terauchi, K. Tsuda et al., Performance of the MIRAI-21 Analytical Electron Microscope, Microsc. Microanal. 10, CD858–859, 2004.

    Google Scholar 

  26. L.F. Allard, D.A. Blom, M.A. O’Keefe, C. Kiely, D. Ackland, M. Wantanabe et al., First Results from the Aberration-Corrected JEOL 220FS-AC STEM/TEM, Microsc. and Microanal. 10, (2004), pp 110–111.

    Google Scholar 

  27. Earl J. Kirkland, R.F. Loane and John Silcox, Simulation of Annular Dark Field STEM Images using a Modified Multisclice Method, Ultramicroscopy 23 (1987) 77–96.

    Article  Google Scholar 

  28. P.M. Voyles, D.A. Muller, and E.J. Kirkland, Depth-Dependent Imaging of Individual Dopant Atoms in Silicon, Microsc. Microanal. 10, 291–300 (2004).

    Article  Google Scholar 

  29. C. Dwyer and J. Etheridge, Scattering of Atomic Scale Electron Probes in Silicon, Ultramicroscopy 96, (2003), p 343–360.

    Article  Google Scholar 

  30. T. Plamann and M.J. Hytch, Tests on the Validity of the atomic column approximation for STEM Probe Propagation, Ultramicroscopy 78, (1999), p 153–161.

    Article  Google Scholar 

  31. K. van Benthem, M. Kim, S.J. Do, J.T. Luck, A.R. Lupini, and S.J. Pennycook, Three Dimensional Imaging of Individual Hafnium Atoms at a Si/SiO2/HfO2 Dielectric Interface, submitted for publication.

    Google Scholar 

  32. Z. Yu, D.A. Muller, and J. Silcox, Study of Strain Fields at a-Si’ c-Si Interface, J. Appl. Phys. 95, (2004), pp 3362–3371.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag London Limited

About this chapter

Cite this chapter

Diebold, A.C. (2005). Challenges to Advanced Materials Characterization for ULSI Applications. In: Zschech, E., Whelan, C., Mikolajick, T. (eds) Materials for Information Technology. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/1-84628-235-7_34

Download citation

  • DOI: https://doi.org/10.1007/1-84628-235-7_34

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-941-8

  • Online ISBN: 978-1-84628-235-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics