Skip to main content

Conductivity Enhancement in Metallization Structures of Regular Grains

  • Chapter
Materials for Information Technology

Part of the book series: Engineering Materials and Processes ((EMP))

  • 1549 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. GD Knight, T Smy, C Crisan: Calculating current flow in deep-submicron and nanoscale metal structures Proc AMC 2001 371–8 (Montreal) (2001)

    Google Scholar 

  2. AM Song: Electron ratchet effect in semiconductor devices and artificial materials with broken centrosymmetry Appl Phys A 75 229–235 (2002); AM Song et al. Appl Phys Lett 79, 1357–59 (2001)

    Article  Google Scholar 

  3. GD Knight: Boundary texture and scattering: practical directions to a soft diode. Microelec Eng 76, 137–145 (2004)

    Article  Google Scholar 

  4. Wen Wu: Fabrication and transport properties of ultra-fine copper interconnects Ph.D. dissertation, KU Leuven, Leuven (2004–2005)

    Google Scholar 

  5. KK Lee et al.: Effect of size and roughness on light transmission in a Si/SiO2 waveguide Appl Phys Lett 77, 1617–1619; 2258 (2000)

    Article  Google Scholar 

  6. GD Knight, T Smy: Modelling roughness, grain and confinement effects on transport in embedded metallic films. Microelec Eng 64, 417–428 (2002)

    Article  Google Scholar 

  7. Y Namba: Electrical conduction of thin metallic films with rough surface. J Appl Phys 396117–18 (1968); Japan J Appl Phys 91326 (1970)

    Google Scholar 

  8. GD Knight: An all-metal diode Poster competition, TEXPO 2002 (Micronet-CMC Ottawa) (2002)

    Google Scholar 

  9. GD Knight, T Smy: 3CPO and carrier backscatter in periodic Cu grainsIn-Ming Yang (Ed.): Electronic proceedings ISTC 2002 (ECS Tokyo), p. 295–304 (2002)

    Google Scholar 

  10. GD Knight, T Smy: Electron wave diffractive transport in Cu interconnects: deep submicron model EUROMAT 2003 A2 (Lausanne, unpublished) (2003)

    Google Scholar 

  11. P Beckmann and A Spizzichino: The Scattering of Electromagnetic Waves from Rough Surfaces (MacMillan, New York) pp 58–67 (1963)

    MATH  Google Scholar 

  12. A Logfren et al.: Quantum behaviour in nanoscale ballistic rectifiers and artificial materials. Phys Rev B 67 195309 1–7 (2003)

    Google Scholar 

  13. JC Anderson: The use of epitaxial films in physical investigations In:The Use of Thin Films in Physical Investigations, NATO A.S.I: London 1965 (Academic Press, London New York) pp 1–7 (1966)

    Google Scholar 

  14. AF Mayadas: Intrinsic resistivity and electron mean free path in aluminum films J. Appl Phys 39, 4241–45 (1968)

    Article  Google Scholar 

  15. AF Mayadas, R Feder, R Rosenberg: Resistivity and structure of evaporated aluminum films. J. Vac Sci Technol 6, 690–93 (1969)

    Article  Google Scholar 

  16. AF Mayadas, M Shatzkes: Electrical-resistivity model for polycrystalline films. Phys Rev B 1, 1382–1389 (1970)

    Article  Google Scholar 

  17. K Fuchs: The conductivity of thin metallic films according to the electron theory of metals. Proc Camb Phil Soc 34, 100–108 (1938)

    Article  Google Scholar 

  18. W Wu et al.: Influence of surface and grain-boundary scattering on the resistivity of copper in reduced dimensions Appl Phys Lett 84 3838–40 (2004) S Brongersma et al. Copper grain growth in reduced dimensions IITC 2003 Proc (ieee) 3.10, 48–50 (2004)

    Google Scholar 

  19. CR Tellier, CR Pitchard and AJ Tosser: Statistical model of electrical conduction in polycrystalline metals thin. Solid Films 61349–54(1979)

    Google Scholar 

  20. JR Sambles, KC Elsom and DJ Jarvis: The electrical resistivity of gold films. Phil Trans R Soc Lond A 304365–96(1982)

    Google Scholar 

  21. PR Evans et al. Appl Phys Lett 76, 481–3 (2000)

    Article  Google Scholar 

  22. SB Soffer: Statistical model for the size effect in electrical conduction. J Appl Phys 38, 1710 (1967)

    Article  Google Scholar 

  23. A v.Bassewitz and G v.Minnigerode: Zeits f Phys 181368–90(1964)

    Google Scholar 

  24. G Steinlesberger et al. Impact of annealing on the resistivity of ultrafine Cu damascene interconnects. Mat Res Soc Symp Proc 766:E4.2 379–84 (2003)

    Google Scholar 

  25. F Abelès and V Van Nguyen: J Physiol, Paris C 179–84 (1970)

    Google Scholar 

  26. A v.Glasow et al. Using the temperature coefficient of the resistance (TCR) as early reliability indicator for stressvoiding risks in Cu interconnects IEEE Proc IRPS 41, 126–31 (2003)

    Google Scholar 

  27. KC Elsom and JR Sambles: Macroscopic surface roughness and the resistivity of thin metal films. J Phys F: Metal Phys 11, 647–56 (1981)

    Article  Google Scholar 

  28. EH Sondheimer: The mean free path of electrons in metals. Adv Phys (suppl to Phil Mag) 1, 1–18ff (1950)

    Google Scholar 

  29. W Zhang, W Wu, GD Knight et al. (IMEC, unpublished) (2004)

    Google Scholar 

  30. SM Rossnagel: Characteristics of ultrathin ta and TaN films. J Vac Sci Technol B 20, 2328–36 (2002)

    Article  Google Scholar 

  31. D Ernur: Narrow trench corrosion of Copper damascene interconnects. Japan J Appl Phys 417338–44(2002); resistivity data to be published (private communication) (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag London Limited

About this chapter

Cite this chapter

Knight, G.D. (2005). Conductivity Enhancement in Metallization Structures of Regular Grains. In: Zschech, E., Whelan, C., Mikolajick, T. (eds) Materials for Information Technology. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/1-84628-235-7_23

Download citation

  • DOI: https://doi.org/10.1007/1-84628-235-7_23

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-941-8

  • Online ISBN: 978-1-84628-235-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics