Skip to main content

Mid-infrared Vertical Cavity Surface Emitting Lasers based on the Lead Salt Compounds

  • Chapter

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 118))

8 Conclusions

In conclusion, lead salt vertical-cavity surface-emitting lasers offer attractive properties as coherent infrared laser sources. In particular, they feature single mode operation, emit circularly shaped parallel beams with extremely small beam divergence, and exhibit very sharp emission lines widths below 12 µeV. Based on the use of high finesse infrared microcavity structures, pulsed mode operation has been achieved well above room temperature as well as CW-operation up to 120 K, which is expected to be significantly increased in the near future. In comparison with quantum cascade lasers, the lead salt VCSELs show a substantially larger wavelength tunability, which is of crucial importance for spectroscopy applications. In addition, lead salt VCSELs can be grown on readily available substrate materials. This not only drastically reduces costs and facilitates the laser fabrication, but also offers improved heat dissipation due to the higher substrate thermal conductivity. Up to now, lead salt VCSELs have operated only under optical excitation but with some technological efforts electrically pumped lasers should also become feasible. Alternatively, one can envision hybrid structures in which low cost and readily available NIR pump lasers are integrated in one package with the lead salt VCSELs to obtain easy to use and cost-efficient mid-infrared laser sources. This would certainly open many promising applications in a variety of different fields.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grisar R, Böttner H, Tacke M, Restelli G (eds). Monitoring of Gaseous Pollutants by Tuneable Diode Lasers, Kluwer Academic Publishers, Dordrecht, 1992.

    Google Scholar 

  2. Tittel F K, Richter D and Fried A. In: Sorokina I T, Vodopyanov K L (eds) Solid State Mid-Infrared Lasers Sources. Springer-Verlag, Berlin, 2003, pp 445–510.

    Google Scholar 

  3. Preier H. Appl Phys 1979;20:189–206.

    Article  ADS  Google Scholar 

  4. Partin D L. IEEE J Quantum Electron 1988; 24:1716–1726.

    Article  ADS  Google Scholar 

  5. Katzir A, Rosman R, Shani Y, et al. In: Cheo P K (ed) Handbook of Solid State Lasers, Marcel Dekker, New York, 1989, pp 227–347.

    Google Scholar 

  6. Preier H. Semicond Sci Technol 1990; 5:S12–S20.

    Article  ADS  Google Scholar 

  7. Tacke M. Infrared Phys Technol 1995; 36:447–463; and Tacke M. In: Helm M (ed) Long Wavelength Infrared Emitters based on Quantum Wells and Superlattices, Gordon and Breach Science Publishers, Amsterdam, 2000, pp 347–396.

    Article  ADS  Google Scholar 

  8. Ishida A and Fujiasyu H. In: Khokhlov D, Lead Chalcogenides: Physics and Applications Taylor and Francis, New York, 2003, pp 533–554.

    Google Scholar 

  9. Findlay P C, Pidgon C R, Kotitschke R, et al. Phys Rev B 1998; 58:12908–12915.

    Article  ADS  Google Scholar 

  10. Springholz G, Shi Z, and Zogg H. In: Liu W K and Santos M B (eds) Thin Films: Heteroepitaxial Systems, World Scientific, Singapore, 1999, pp 621–688.

    Google Scholar 

  11. Springholz G, In: Khokhlov D, Lead chalcogenides: Physics and applications, Taylor and Francis, New York, 2003, pp. 123–207.

    Google Scholar 

  12. Partin D L and Heremans J. In Mahajan (ed) Handbook on Semiconductors Vol. 3a, North Holland, Amsterdam, 1994, pp. 369–450.

    Google Scholar 

  13. Feit Z, Kostyk D, Woods R J, and Mak P. Appl Phys Lett 1991; 58:343–345.

    Article  ADS  Google Scholar 

  14. Schießl U P and Rohr J. Infrared Phys Technol 1999; 40:325–328.

    Article  ADS  Google Scholar 

  15. Bauer G, Kriechbaum M, Shi Z, et al. J Nonlinear Opt Phys Mat 1995; 4:283–312.

    Article  Google Scholar 

  16. Faist J, Capasso F, Sivco D L, et al. Science 1994; 264:553–556.

    Article  ADS  Google Scholar 

  17. Helm M (ed). Long Wavelength Infrared Emitters based on Quantum Wells and Superlattices, Gordon and Breach Science Publishers, Amsterdam, 2000, pp 1–12.

    Google Scholar 

  18. Gmachl C, Capasso F, Sivco D L, and Cho A Y. Rep Prog Phys 2001; 64:1533–1601.

    Article  ADS  Google Scholar 

  19. Hofstetter D and Faist J. In: Sorokina I T and Vodopyanov K L (eds) Solid State Mid-Infrared Lasers Sources, Springer-Verlag, Berlin, 2003, pp 61–96.

    Chapter  Google Scholar 

  20. Shani A, Katzir A, Bachem K H, et al. Appl Phys Lett 1986; 48:1178–1180.

    Article  ADS  Google Scholar 

  21. Jewell J L, Huang K F, Tai K, et al. Appl Phys Lett 1989; 55:424–426.

    Article  ADS  Google Scholar 

  22. Jewell J L, Harbison J P, Scherer A, et al. IEEE J Quantum Electron 1991; 27:1332–1346.

    Article  ADS  Google Scholar 

  23. Iga K, Koyama F, and Kinoshita S. IEEE J Quantum Electron 1988; 24:1845–1855.

    Article  ADS  Google Scholar 

  24. Koch S W, Jahnke F, and Chow W W. Semicond Sci Technol 1995; 10:739–751.

    Article  ADS  Google Scholar 

  25. Blum O. In: Miller A, Ebrahimzadeh M, Finlayson D M (eds), Semiconductor Quantum Optoelectronics, Institute of Physics Publishing, London, 1999, pp 265–294.

    Google Scholar 

  26. Li H and Iga K, Vertical-Cavity Surface-Emitting Laser Devices, Springer-Verlag, Berlin, 2003.

    Google Scholar 

  27. Schwarzl T, Heiss W, Springholz G, et al. Electron Lett 2000; 36:322–324.

    Article  Google Scholar 

  28. Springholz G, Schwarzl T, Aigle M, et al. Appl Phys Lett 2000; 76:1807–1809.

    Article  ADS  Google Scholar 

  29. Bewley W W, Felix C L, Vurgaftman I, et al. Electron Lett 2000; 36:539–540.

    Article  Google Scholar 

  30. Shi Z, Xu G, McCann P J, et al. Mater Res Soc Symp Proc 2000; 607:181–185.

    Google Scholar 

  31. Shi Z, Xu G, McCann P J, et al. Appl Phys Lett 2000; 76:3688–3690.

    Article  ADS  Google Scholar 

  32. Springholz G, Schwarzl T, Heiss W, et al. J Crystal Growth 1999; 201/202:999–1004.

    Article  Google Scholar 

  33. Schwarzl T, Heiss W, and Springholz G. Appl Phys Lett 1999; 75:1246–1248.

    Article  ADS  Google Scholar 

  34. Schwarzl T, Springholz G, Seyringer H, et al. IEEE J Quantum Electron 1999; 35:1753–1758.

    Article  ADS  Google Scholar 

  35. Heiss W, Schwarzl T, Roither J, et al. Prog Quantum Electron 2001; 25:193–228.

    Article  ADS  Google Scholar 

  36. Felix C L, Bewley W W, Vurgaftman I, et al. Appl Phys Lett 2001; 73:770–3772.

    Google Scholar 

  37. Heiss W, Schwarzl T, Springholz G, et al. Appl Phys Lett 2001; 78:862–864.

    Article  ADS  Google Scholar 

  38. Fürst J, Pascher H, Schwarzl T, et al. Appl Phys Lett 2002; 81:208–210.

    Article  ADS  Google Scholar 

  39. Fürst J, Schwarzl T, Böberl M, et al. Appl Phys Lett 2004; 84: 3268–3270.

    Article  ADS  Google Scholar 

  40. Fürst J, Schwarzl T, Böberl M, et al. Electron Lett 2004, 40:966–968.

    Article  Google Scholar 

  41. Fürst J, Pascher H, Schwarzl T, et al. Appl Phys Lett 2005; 86:021100–2.

    Article  Google Scholar 

  42. Schwarzl T, Springholz G, Böberl M et al. Appl Phys Lett 2005; 86:031102–4.

    Article  ADS  Google Scholar 

  43. Springholz G, Schwarzl T, Heiss W, et al. Appl Phys Lett 2001; 79:1225–1227.

    Article  ADS  Google Scholar 

  44. Whitaker T. Compound Semiconductors, 1998; Winter II:18–29.

    Google Scholar 

  45. Redwing J M, Loeber D A S, Anderson N G, et al. Appl Phys Lett 1996; 69:1–3.

    Article  ADS  Google Scholar 

  46. Krestnikov I L, Lundin W V, Sakharov A V, et al. Appl Phys Lett 1999; 75:1192–1194.

    Article  ADS  Google Scholar 

  47. Koeth J, Dietrich R, and Forchel A. Appl Phys Lett 1998; 72:1638–1640.

    Article  ADS  Google Scholar 

  48. Baba T, Yogo Y, Suzuki K, Koyama F, and Iga K. Electron Lett 1993; 29:913–914.

    Article  Google Scholar 

  49. Felix C L, Bewley W W, Vurgaftman I, et al. Appl Phys Lett 1997; 71:3483–3485.

    Article  ADS  Google Scholar 

  50. Hadji E, Bleuse J, Magnea N, Pautrat J L. Appl Phys Lett 1996; 68:2480–2482.

    Article  ADS  Google Scholar 

  51. Roux C, Hadji E, and Pautrat J L. Appl Phys Lett 1999; 75:3763–3765.

    Article  ADS  Google Scholar 

  52. Gerard A, Burch J M. Introduction to Matrix Method in Optics, John Wiley and Sons, 1975; or Le Roy-Brehonnet F and Le Jeune B. Prog Quant Electron 1997; 21:109–51.

    Google Scholar 

  53. Rakic A D, Majewski M L. In: Li H and Iga K, Vertical-Cavity Surface-Emitting Laser Devices, Springer-Verlag, Berlin, 2003, pp 259–301.

    Google Scholar 

  54. Zemel J N, Jensen J D, and Schoolar R B. Phys Rev 1965; 140:A330–A342.

    Article  ADS  Google Scholar 

  55. Bauer G and Krenn H. In: Palik E D (ed) Handbook of Optical Constants of Solids, Academic Press, New York, 1985, pp 517–523, 535–546.

    Google Scholar 

  56. Yuan S, Krenn H, Springholz G, Bauer G. Phys Rev B 1993; 47:7213–7226.

    Article  ADS  Google Scholar 

  57. Yuan S, Springholz G, Bauer G, Kriechbaum M. Phys Rev B 1994; 49:5476–5489.

    Article  ADS  Google Scholar 

  58. Krenn H, Yuan S, Frank N, Bauer G, Phys Rev B 1998; 57:2393–2401.

    Article  ADS  Google Scholar 

  59. Majumdar A, Xu H Z, Zhao F. J Appl Phys 2004; 95:939–943.

    Article  ADS  Google Scholar 

  60. Springholz G, Bauer G. Appl Phys Lett 1993; 62:2399–2401.

    Article  ADS  Google Scholar 

  61. Frank N, Springholz G, Bauer G. Phys Rev Lett. 1994; 73:2236–2239.

    Article  ADS  Google Scholar 

  62. Zhao F, Wu H, Jayasinghe L, Shi Z. Appl Phys Lett 2002; 80:1129–1131.

    Article  ADS  Google Scholar 

  63. Wu H, Zhao F, Jayasinghe L, Shi Z. J Vac Sci Technol B 2002; 20:1356–1360.

    Article  Google Scholar 

  64. Fang X M, Wu H Z, Shi Z, et al. J Vac Sci Technol B 1999; 17:1297–1300.

    Article  Google Scholar 

  65. Stanley R P, Houdre R, Oesterle U, et al. Appl Phys Lett 1994; 65:1883–1885.

    Article  ADS  Google Scholar 

  66. Holloway H and Walpole J N. Prog. Crystal Growth Charact 1979; 2:49–94.

    Article  Google Scholar 

  67. Springholz G, Bauer G and Ihninger G. J Cryst Growth 1993; 127:302–307; and Ueta A Y, Springholz G and Bauer G. J Cryst Growth 1997; 175/176:1022–1027.

    Article  ADS  Google Scholar 

  68. Springholz G, Kriechbaum M, Hofmann W, et al. Superlatt Microstruc 1993; 13:25–28.

    Article  ADS  Google Scholar 

  69. Böberl M, Heiss W, Schwarzl T, et al. Appl Phys Lett 2003; 82:4065–4067.

    Article  ADS  Google Scholar 

  70. Kaindl R A, Wurm M, Reimann K, et al. J Opt Soc America B 2000; 17:2086–2092.

    Article  ADS  Google Scholar 

  71. Klann R, Hofer T, Buhleier R, et al. J Appl Phys 1995; 77:277–283.

    Article  ADS  Google Scholar 

  72. Bimberg D, Grundmann M and Ledentsov N N, Quantum Dot Heterostructures, Wiley, Chichester, 1998.

    Google Scholar 

  73. Asada M, Miyamoto Y and Seimitsu Y. IEEE J Quantum Electron 1986; 22:1915–1919.

    Article  ADS  Google Scholar 

  74. Arakawa Y and Sakaki H. Appl Phys Lett 1982; 40:939–941.

    Article  ADS  Google Scholar 

  75. Kirstaedter N, Ledentsov N N, Grundmann M, et al. Electron Lett 1994; 30:1416–1418.

    Article  Google Scholar 

  76. Leonard D, Krishnamurty M, Reaves C M. Appl Phys Lett 1993; 63:3203–3205.

    Article  ADS  Google Scholar 

  77. Ratsch C and Zangwill A. Surf Sci 1993; 293:123–126. Srolowitz D J. Acta Metall 1989; 37:621–625.

    Article  ADS  Google Scholar 

  78. see, e.g., Shchukin V A, Ledentsov N N, and Bimberg D, Epitaxy of Nanostructures, Springer Verlag, Berlin, 2003, and references therein.

    Google Scholar 

  79. Huang X, Stintz A, Hains C P, et al. Electron Lett 2000; 36:41–43.

    Article  Google Scholar 

  80. see, e.g., Ledentsov N N. In: Grundmann M (ed) Nano-Optoelectronics, Springer Verlag, Berlin, 2002, pp 317–337.

    Google Scholar 

  81. Grundmann M. Physica E 2000; 5:167–181, and references therein.

    Article  ADS  Google Scholar 

  82. Pinczolits M, Springholz G, Bauer G. Appl Phys Lett 1998; 73:250–252.

    Article  ADS  Google Scholar 

  83. Pinczolits M, Springholz G, Bauer G. J Crystal Growth 1999; 201/202:1126–1130.

    Article  Google Scholar 

  84. Raab A, Springholz G. Appl Phys Lett 2000; 77:2991–2993.

    Article  ADS  Google Scholar 

  85. Raab A, Springholz G. Appl Phys Lett 2002; 81:2457–2459.

    Article  ADS  Google Scholar 

  86. Springholz G, Holy V, Pinczolits M, Bauer G. Science 1998; 282:734–737.

    Article  ADS  Google Scholar 

  87. Pinczolits M, Springholz G, Bauer G. Phys Rev B 1999; 60:11524–11529.

    Article  ADS  Google Scholar 

  88. Springholz G, Pinczolits M, Mayer P, et al. Phys Rev Lett 2000; 84:4669–4672.

    Article  ADS  Google Scholar 

  89. Raab A, Lechner R T and Springholz G. Appl Phys Lett 2002; 80:1273–1275.

    Article  ADS  Google Scholar 

  90. Holy V, Springholz G, Pinczolits M and Bauer G. Phys Rev Lett 1999; 83:356–359.

    Article  ADS  Google Scholar 

  91. Lechner R T, Schülli T, Holy V, et al. Appl Phys Lett 2005; 84:885–888.

    Article  ADS  Google Scholar 

  92. Krenn H, Herbst W, Pascher H, et al. Phys Rev B 1999; 60:8117–8122.

    Article  ADS  Google Scholar 

  93. Schwarzl T, Heiss W, Springholz G, et al. Phys Rev B 2002; 65:245321–9.

    Article  ADS  Google Scholar 

  94. Alferov Z. In: Mirua N and Ando T (eds), Proc. 25th Int Conf Phys Semicond, Osaka 2000, pp 14–21.

    Google Scholar 

  95. Heuer W and Zacharias H. IEEE J Quant Electron 1988; QE-24:2087–2100.

    Article  ADS  Google Scholar 

  96. Zhao F, Wu H, Majumdar A and Shi Z. Appl Phys Lett 2003; 83:5133–5135.

    Article  ADS  Google Scholar 

  97. Allen T, Blaser S, Beck M, et al. Appl Phys Lett 2003; 83:1929–1931.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Springholz, G., Schwarzl, T., Heiss, W. (2006). Mid-infrared Vertical Cavity Surface Emitting Lasers based on the Lead Salt Compounds. In: Krier, A. (eds) Mid-infrared Semiconductor Optoelectronics. Springer Series in Optical Sciences, vol 118. Springer, London . https://doi.org/10.1007/1-84628-209-8_8

Download citation

Publish with us

Policies and ethics