Skip to main content

VCSELs Emitting in the 2–3 µm Wavelength Range

  • Chapter
Mid-infrared Semiconductor Optoelectronics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 118))

  • 2565 Accesses

4 Conclusion

In this chapter, we tried to give a precise picture of the current state of the art of VCSEL technology in the 2–3 µm spectral range. We described classical microcavities but also structures with external-cavity geometry which allows one to fabricate devices with improved output beam properties (single transverse mode TEM00 operation) at high power. The electrically-pumped microcavities with highest performance in the 2–3 µm range are obtained from the AlGaInAs/InP materials system. But λ = 2.1 µm seems to represent the high wavelength limit of such devices. Concerning optically-pumped devices, Sb-based structures seem to have the best properties. Circular TEM00 output beam and single frequency laser operation was obtained above room temperature from both microcavities and external cavity devices with Type-I GaInAsSb/AlGaAsSb MQW active regions.

These mid-infrared emitting VCSELs were developed essentially for spectroscopic applications. The single mode operation, together with the broad continuous tuning range (without mode-hops) and the high repetition rate of VCSELs, are particularly interesting and highly suitable for gas detection or environmental monitoring. However, the recent development of vertical-cavity structures combining high power and high output beam quality opens supplementary fields of applications, for example in medicine, fiber amplifier pumping, free-space communications or military infrared countermeasures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Li H, Iga K. Vertical-Cavity Surface-Emitting Laser Devices, Springer Series in Photonics, 2002

    Google Scholar 

  2. Wilmsen C, Temkin H, Coldren LA. Vertical-Cavity Surface-Emitting Lasers, Cambridge University Press, 1999

    Google Scholar 

  3. Choi HK. Long-wavelength infrared semiconductor lasers. Wiley Series in Lasers and Applications, 2004

    Google Scholar 

  4. Melngailis I. Longitudinal injection-plasma laser of InSb. Appl. Phys. Lett. 1965; 6: 59–61

    Article  ADS  Google Scholar 

  5. Iga K, Koyama F, Kinoshita S. Surface emitting semiconductor-lasers. IEEE J. Quantum Electron. 1988; 24: 1845–1855

    Article  ADS  Google Scholar 

  6. Soda H, Iga K, Kitahara C, Suematsu Y. GaInAsP-InP surface emitting injection-lasers. Japon. J. of Appl. Phys. 1979; 18: 2329–2330

    Article  ADS  Google Scholar 

  7. Lee YH, Tell B, Brown-Goebeler KF, Leibenguth RE, Mattera VD. Deep-red continuous wave top-surface-emitting vertical-cavity AlGaAs superlattice lasers. IEEE Photon. Technol. Lett. 1991; 3: 108–109

    Article  ADS  Google Scholar 

  8. Baba T, Yogo Y, Koyama F, Iga K. Near room temperature continuous-wave lasing characteristic of GaInAsP/InP surface emitting laser. Electron. Lett. 1993; 29: 913–914

    Article  Google Scholar 

  9. Boehm G, Ortsiefer M, Shau R, et al. InP-based VCSEL technology covering the wavelength range from 1.3 to 2.0 µm. J. Crystal Growth 2003; 251: 748–753

    Article  ADS  Google Scholar 

  10. Schwarzl T, Heiss W, Springholz G, Aigle M., Pascher H. 6 µm vertical cavity surface emitting laser based on IV-VI semiconductor compounds. Electron. Lett. 2000; 36: 322–324

    Article  Google Scholar 

  11. Fürst J, Schwarzl T, Böberl M, Pascher H, Springholtz G, Heiss W. Vertical-cavity surface emitting lasers in the 8-µm midinfrared spectral range with continuous-wave and pulsed emission. IEEE J. Quantum Electron. 2004; 40: 966–969

    Article  ADS  Google Scholar 

  12. Totschnig G, Lackner M, Shau R, et al. 1.8-µm vertical-cavity surface-emitting laser absorption measurements of HCl, H20 and CH4. Meas. Sci. Technol. 2003; 14: 472–478

    Article  ADS  Google Scholar 

  13. Wang J, Sanders ST, Jefries JB, et al. Oxygen measurements at high pressures with verticl caviy surface-emitting lasers. Appl. Phys. B. 2001; 72: 865–872

    Article  ADS  Google Scholar 

  14. Kaspi R, Ongstad A, Dente GC, et al. High power and high brightness from an optically pumped InAs/InGaSb Type-II midinfrared laser with low confinement. Appl. Phys. Lett. 2002; 81: 406–408

    Article  ADS  Google Scholar 

  15. Waynant RW, Ilev IK, Gannot I. Mid-infrared laser applications in medicine and biology. Phil. Trans. of the Royal Society of London. Series A-Math. Phys. and Engineering Sciences 2001; 359: 635–644

    Article  ADS  Google Scholar 

  16. Werle P, Slemr F, Maurer K, Kormann R, Mucke R, Janker B. Mid-infrared laser-optical sensors for gas analysis. Optics and lasers in engineering 2002; 37: 101–114

    Article  ADS  Google Scholar 

  17. Jelinkova H, Pasta J, Nemec M, et al. Different influence of long and short mid-infrared laser pulses on eye tissue. Laser Physics 2003; 13: 735–742

    Google Scholar 

  18. Schade W, Willer U, Wondraczek L. Mid-infrared laser sensors for mapping environment and combustions. Glass Science and Technology 2003; 76: 109–114

    Google Scholar 

  19. Debray JP, Sagnes I, Le Roux G, et al. MOVPE growth of a monolithic VCSEL at 1.56 µm in the InGaAlAs-InAlAs system lattice matched to InP. IEEE Photon. Technol. Lett. 1999; 11: 770–772

    Article  ADS  Google Scholar 

  20. Streubel K, André J, Wallin J, Landgren G. Fabrication of 1.5 µm optically pumped Ga1−xInxAsyP1−y/InP vertical-cavity surface-emitting lasers. Mater. Sci. Eng. 1994; B28: 289–292

    Article  Google Scholar 

  21. Almuneau G, Hall E, Mukaihara T, Nakagawa S, Luo CY, Clarke DR, Coldren LA. Improved electrical and thermal properties of InP-AlGaAsSb Bragg mirrors for long-wavelength vertical-cavity lasers. IEEE Photon. Technol. Lett. 2000; 12: 1322–1324

    Article  ADS  Google Scholar 

  22. Harmand JC, Ungaro G, Sagnes I, et al. Room temperature continuous wave operation under optical pumping of a 1.48 µm vertical cavity laser based on AlGaAsSb mirror. J. Crystal Growth 1999; 201/202: 837–840

    Article  Google Scholar 

  23. Boucart J, Starck C, Plais A, et al. RT pulsed operation of metamorphic VCSEL at 1.55 µm. Electron. Lett. 1998; 34: 2133–2135

    Article  Google Scholar 

  24. Boucart J, Starck C, Gaborit F, et al. 1-mw CW-RT monolithic VCSEL at 1.55 µm. IEEE Photon. Technol. Lett. 1999; 6: 629–631

    Article  ADS  Google Scholar 

  25. Babic DI, Streubel K, Mirin RP, et al. Room-temperature continuous-wave operation of 1.54 µm vertical-cavity lasers. IEEE Photon. Technol. Lett. 1995; 7: 1225–1227

    Article  ADS  Google Scholar 

  26. Genty F, Almuneau G, Chusseau L, Wilk A, Gaillard S, Boissier G, Grech P, Jacquet J. Growth and characterization of vertical cavity structures on InP with GaAsSb/AlAsSb Bragg mirrors for 1.55 µm emission. J. Crystal Growth 1998; 201/202: 1024–1027

    Article  Google Scholar 

  27. Anni M, Gigli G, Cingolani R, Patané S, Arena A, Allegrini M. Organic µ cavities based on thermally evaporated Te0x-LiF distributed Bragg reflectors. Appl. Phys. Lett. 2001; 79: 1381–1383

    Article  ADS  Google Scholar 

  28. Blum O, Hafich MJ, Klem JF, Baucom K, Allerman A. Wet thermal oxidation of AlAsSb against As/Sb ratio. Electron. Lett. 1997; 33: 1097–1099

    Article  Google Scholar 

  29. Langenfelder T, Grothe H. Optimisation of λ = 850 nm hybrid-mirror vertical-cavity surface-emitting laser with 37 µA threshold current. IEE Proc. Optoelectron. 2000; 147: 56–60

    Article  Google Scholar 

  30. Lear KL, Choquette KD, Schneider RP, Kilcoyne SP, Geib KM. Selectively oxidized vertical-cavity surface-emitting lasers with 50-percent power conversion efficiency. Electron. Lett. 1995; 31: 208–209

    Article  Google Scholar 

  31. Weigl B, Grabherr M, Jung C, et al. High-performance oxide-confined GaAs VCSEL’s. IEEE J. Select. Topics Quantum Electron. 1997; 3: 409–415

    Article  Google Scholar 

  32. Zhang SZ, Margalit NM, Reynolds TE, Bowers JE. 1.54-µm vertical-cavity surface-emitting laser transmission at 2.5 Gb/s. IEEE Photon. Technol. Lett. 1997; 9: 374–376

    Article  ADS  Google Scholar 

  33. Keating A, Black A, Karim A, et al. High-temperature optically pumped 1.55 µm VCSEL operating at 6 Gb/s. IEEE Photon. Technol. Lett. 2000; 12: 116–118

    Article  ADS  Google Scholar 

  34. Grabherr M, Jäger R, Miller M, et al. Bottom-emitting VCSEL’s for high-CW optical output power. IEEE Photon. Technol. Lett. 1998; 12: 1061–1063

    Article  ADS  Google Scholar 

  35. Grabherr M, Miller M, Jäger R, et al. High-Power VCSEL’s: single devices and densely packed 2-D-arrays. IEEE J. Select. Topics Quantum Electron. 1999; 5: 495–502

    Article  Google Scholar 

  36. Yan C, Ning Y, Qin L, et al. A high power InGaAs/GaAsP vertical-cavity surface-emitting laser and its temperature characteristics. Semicond. Sci. Technol. 2004; 19: 685–689

    Article  ADS  Google Scholar 

  37. Francis D, Chen HL, Yuen W, Li G, Chang-Hasnain C. Monolithic 2D-VCSEL array with > 2W CW and > 5W pulsed output power. Electron. Lett. 1998; 34: 2132–2133

    Article  Google Scholar 

  38. Salet P, Plais A, Derouin E, Fortin C, Starck C, Jacquet J, Brillouet F. Undercut ridge structures: A novel approach to 1.3/1.55 µm vertical-cavity lasers designed for continuous-wave operation. IEE Proc.-Optoelectron. 1998; 145: 125–131

    Article  Google Scholar 

  39. Sun D, Fan W, Kner P, et al. Sub-mA threshold 1.5 µm VCSELs with epitaxial and dielectric DBR mirrors. IEEE Photon. Technol. Lett. 2003; 15: 1677–1679

    Article  ADS  Google Scholar 

  40. Zanatta JP, Noel F, Ballet P, Hdadach N, Million A, Destefanis G, Mottin E, Kopp C, Picard E, Hadji E. HgCdTe molecular beam epitaxy material for microcavity light emitters: Application to gas detection in the 2–6 µm range. J. Electron. Mat. 2003; 32: 602–607

    Article  ADS  Google Scholar 

  41. Weigl B, Grabherr M, Michalzik R, Reiner G, Ebeling KJ. High-power single mode selectively oxidized vertical-cavity surface-emitting lasers. IEEE Photon. Technol. Lett. 1996; 8: 971–973

    Article  ADS  Google Scholar 

  42. Young DB, Scott JW, Peters FH, et al. Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 1993; 29: 2013–2021

    Article  ADS  Google Scholar 

  43. Yokouchi N, Miyamoto T, Uchida T, Inaba Y, Koyama F, Iga K. 40 Å continuous tuning of a GaInAsP/InP vertical-cavity surface emitting laser using an external mirror. IEEE Photon. Technol. Lett. 1992; 4: 701–703

    Article  ADS  Google Scholar 

  44. Hadley MA, Wilson GC, Lau KY, Smith JS. High single-transverse-mode output from external-cavity surface emitting laser diodes. Appl. Phys. Lett. 1993; 63: 1607–1609

    Article  ADS  Google Scholar 

  45. Wilson GC, Hadley MA, Smith JS, Lau KY. High single-mode output power from compact external microcavity surface-emitting laser diode. Appl. Phys. Lett. 1993; 63: 3265–3267

    Article  ADS  Google Scholar 

  46. Giudice GE, Kuksenkov DV, Grave de Peralda L, Temkin H. Single-mode operation from an external cavity controlled vertical-cavity surface-emitting laser. IEEE Photon. Technol. Lett. 1999; 11: 1545–1547

    Article  ADS  Google Scholar 

  47. Sandusky JV, Brueck SR. A CW external-cavity surface-emitting laser. IEEE Photon. Technol. Lett. 1996; 8: 313–315

    Article  ADS  Google Scholar 

  48. Kuznetsov M, Hakimi F, Sprague R, Mooradian A. High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams. IEEE Photon. Technol. Lett. 1997; 9: 1063–1065

    Article  ADS  Google Scholar 

  49. Kuznetsov M, Hakimi F, Sprague R, Mooradian A. Design and characteristics of high-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams. IEEE J. Select. Topics Quantum Electron. 1999; 5: 561–573

    Article  Google Scholar 

  50. Lutgen S, Albrecht T, Brick P, Reill W, Luft J, Späth W. 8-W high-efficiency continuous-wave semiconductor disk laser at 1000 nm. Appl. Phys. Lett. 2003; 82: 3620–3622

    Article  ADS  Google Scholar 

  51. Garnache A, Kachanov AA, Stoeckel F, Houdre R. Diode-pumped broadband vertical-external-cavity surface-emitting semiconductor laser applied to high-sensitivity intracavity absorption spectroscopy. J. Opt. Soc. Amer. B. 2000; 17: 1589–1598

    Article  ADS  Google Scholar 

  52. Garnache A, Hwang WY, Hoogland S, et al. 1.5 µm high-power circular TEM00 surface-emitting laser operating in CW at 300K. Proc. IEEE IPRM 2002; Post-deadline paper #3

    Google Scholar 

  53. Symonds C, Dion J, Sagnes I, et al. High performance 1.55 µm broadband integrated dielectric-metal mirror. Electron. Lett. 2004; 40: 734–735

    Article  Google Scholar 

  54. Heiss W, Schwarzl T, Roither J, et al. Epitaxial Bragg mirrors for the mid-infrared and their applications. Progress in Quantum Electronics. 2001; 25: 193–228

    Article  ADS  Google Scholar 

  55. Hadji E, Bleuse J, Magnea N, Pautrat JL. Photopump infrared vertical-cavity surface-emitting laser. Appl. Phys. Lett. 1996; 68: 2480–2482

    Article  ADS  Google Scholar 

  56. Roux C, Hadji CE, Pautrat JL, 2.6 µm optically pumped vertical-cavity surface-emitting laser in the CdHgTe system. Appl. Phys. Lett. 1999; 75: 3763–3765

    Article  ADS  Google Scholar 

  57. Mondry MJ, Tarsa EJ, Coldren LA. Molecular beam epitaxial growth of strained AlGaInAs multi-quantum well lasers on InP. J. of Electron. Mater. 1996; 25: 948–954

    Article  ADS  Google Scholar 

  58. Chen TR, Chen PC, Ungar J, Newkirk MA, Oh S, BarChaim N. Low-threshold and high-temperature operation of InGaAlAs-InP lasers. IEEE Photon. Technol. Lett. 1997; 9: 17–18

    Article  MATH  ADS  Google Scholar 

  59. Ohnoki N, Okazaki G, Koyama F, Iga K. Record high characteristic temperature (T0 = 122K) of 1.55 µm strain-compensated AlGaInAs/AlGaInAs MQW lasers with AlAs/AlInAs multiquantum barrier. Electron. Lett. 1999; 35: 51–52

    Article  Google Scholar 

  60. Kuang GK, Böhm G, Grau M, Rösel G, Amann MC. Long wavelength InGaAs-InGaAlAs-InP lasers grown in MBE. J. Crystal Growth 2001; 227–228: 334–337

    Article  Google Scholar 

  61. Felix CL, Bewley WW, Vurgaftman I, et al. Midinfrared vertical-cavity surface-emitting laser. Appl. Phys. Lett. 1997; 71: 3483–3485

    Article  ADS  Google Scholar 

  62. Bewley WW, Felix CL, Vurgaftman I, et al. Continuous-wave mid-infrared VCSELs. IEEE Photon. Technol. Lett. 1998; 10: 660–662

    Article  ADS  Google Scholar 

  63. Baranov AN, Rouillard Y, Boissier G, Grech P, Gaillard S, Alibert C. Sb-based monolithic VCSEL operating near 2.2 µm at room temperature. Electron. Lett. 1998; 34: 281–282

    Article  Google Scholar 

  64. Yarekha DA, Glastre G, Perona A, et al. High temperature GaInSbAs/GaAlSbAs quantum well singlemode continuous wave lasers emitting near 2.3 µm. Electron. Lett. 2000; 36: 537–539

    Article  Google Scholar 

  65. Alford WJ, Raymond TD, Allerman AA. High power and good beam quality at 980 nm from a vertical external-cavity surface-emitting laser. J. Opt. Soc. Am. B 2002; 19: 663–666

    Article  ADS  Google Scholar 

  66. Lindberg H, Strassner M, Bengtsson J, Larsson A. High-power Optically pumped 1550-nm VECSEL with a bonded silicon heat spreader. IEEE Photon. Technol. Lett. 2004; 16: 1233–1235

    Article  ADS  Google Scholar 

  67. Hastie JE, Hopkins J-M, Calvez S, et al. 0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser. IEEE Photon. Technol. Lett. 2003; 15: 894–896

    Article  ADS  Google Scholar 

  68. Symonds C, Sagnes I, Oudar J-L, et al. Room temperature CW operation at 1.55 µm of a monolithic InP-based optically-pumped Vertical-External-Cavity Surface-Emitting lasers grown by MOCVD. Proc. IEEE IPRM 2003; Post-deadline paper WB1.7: 259–260

    Google Scholar 

  69. Cerutti L, Garnache A, Genty F, Ouvrard A, Alibert C. Low threshold, room temperature laser diode pumped Sb-based VECSEL emitting around 2.1 µm. Electron. Lett. 2002; 39: 290–292

    Article  Google Scholar 

  70. Borca-Tasciuc T, Song DW, Meyer JR, et al. Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices. Appl. Phys. 2002; 92: 4994–4498

    Article  Google Scholar 

  71. Genty F, Cerutti L, Garnache A, et al. Type-I quantum-well VCSEL structure on GaSb emitting in the 2–2.5 µm range. IEE Proc. Optoelectron. 2002; 149: 22–26

    Article  Google Scholar 

  72. Cerutti L, Garnache A, Ouvrard A, Genty F. High temperature continuous wave operation of Sb-based vertical external cavity surface emitting laser near 2.3 µm. J. Crystal Growth 2004; 268: 128–134

    Article  ADS  Google Scholar 

  73. Ouvrard A, Garnache A, Cerutti L, Genty F, Romanini D. Single Frequency tunable Sb-based Vertical Cavity Surface Emitting Lasers emitting at 2.3,m. Proc. IEEE CLEO San Francisco 2004; paper CPDB9

    Google Scholar 

  74. Cerutti L, Garnache A, Ouvrard A, Garcia M, Cerda E, Genty F. 2.36 µm diode pumped VCSEL operating at room temperature in continuous wave with circular TEM00 output beam. Electron. Lett. 2004; 40: 869–871

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Genty, F., Garnache, A., Cerutti, L. (2006). VCSELs Emitting in the 2–3 µm Wavelength Range. In: Krier, A. (eds) Mid-infrared Semiconductor Optoelectronics. Springer Series in Optical Sciences, vol 118. Springer, London . https://doi.org/10.1007/1-84628-209-8_4

Download citation

Publish with us

Policies and ethics