Skip to main content

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 118))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.S. Rothman, C.P. Rinsland, A. Goldman, S.T. Massie, D.P. Edwards, J.M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.Y. Mandin, J. Schroeder, A. McCann, R.R. Gamache, R.B. Wattson, K. Yoshino, K.V. Chance, K.W. Jucks, L.R. Brown, V. Nemtchinov, P. Varanasi: The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition. J. Quant. Spectrosc. Radiat. Transfer 60, 665 (1998)

    Article  ADS  Google Scholar 

  2. B. Jean, T. Bende: Mid-IR Laser Applications in Medicine. In: I.T. Sorokina, K.L. Vodopyanov (ed) Solid-State Mid-Infrared Laser Sources,Springer-Verlag, Berlin, 2003, pp. 511–544 (Topics in Applied Physics no. 89)

    Chapter  Google Scholar 

  3. J.T. Olesberg: Noninvasive blood glucose monitoring in the 2.0–2.5 µm spectral range. In: 2001 IEEE/LEOS Conf. Proc. Vol. 2, p. 529

    Google Scholar 

  4. see for example http://www.lisalaser.com

    Google Scholar 

  5. M. Mond, D. Albrecht, E. Heumann, G. Huber, S. Kück, V.I. Levchenko, V.N. Yakimovich, V.G. Shcherbitsky, V.E. Kisel, N.V. Kuleshov, M. Rattunde, J. Schmitz, R. Kiefer, J. Wagner: 1.9-µm and 2.0-µm laser diode pumping of Cr2+:ZnSe and Cr2+:CdMnTe. Optics Lett. 27, 1034 (2002)

    Article  ADS  Google Scholar 

  6. C.D. Nabors, J. Ochoa, T.Y. Fan, A. Sanchez, H.K. Choi, G.W. Turner: Ho:YAG Laser Pumped By 1.9-µm Diode Lasers, IEEE J. Quantum Electron. 31, 1603 (1995)

    Article  ADS  Google Scholar 

  7. I. Melngailis: Maser action in InAs Diodes. Appl. Phys. Lett. 2, 176 (1963)

    Article  ADS  Google Scholar 

  8. C. Caneau, A.K. Srivastava, A.G. Dentai, J.L. Zyskind, M.A. Pollack: Room temperature GaInAsSb/AlGaAsSb DH injection lasers at 2.2 µm. Electron. Lett. 21, 815 (1985)

    Article  ADS  Google Scholar 

  9. A.N. Baranov, C. Fouillant, P. Grunberg, J.L. Lazzari, S. Gaillard, A. Joullié: High temperature operation of GaInAsSb/AlGaAsSb double heterostructure lasers emitting near 2.1 µm. Appl. Phys. Lett. 65, 616 (1994)

    Article  ADS  Google Scholar 

  10. J.P. van der Ziel, T.H. Chiu, W.T. Tsang: Optically pumped laser oscillation at 3.83 µm from InAs1−xSbx grown by molecular beam epitaxy on GaSb. Appl. Phys. Lett. 47, 1139(1985)

    Article  ADS  Google Scholar 

  11. H.K. Choi, G.W. Turner, Z.L. Liau: 3.9-µm InAsSb/AlAsSb double-heterostructure diode lasers with high output power and improved temperature characteristics. Appl. Phys. Lett. 65, 2251 (1994)

    Article  ADS  Google Scholar 

  12. A.N. Baranov, A.N. Imenkov, V.V. Sherstnev, Y.P. Yakovlev: 2.7–3.9 µm InAsSb(P)/InAsSbP low threshold diode lasers. Appl. Phys. Lett. 64, 2480 (1994)

    Article  ADS  Google Scholar 

  13. H.K. Choi, S.J. Eglash: High-power multiple-quantum-well GaInAsSb/ AlGaAsSb diode lasers emitting at 2.1 µm with low threshold current density. Appl. Phys. Lett. 61, 1154 (1992)

    Article  ADS  Google Scholar 

  14. G.W. Turner and H.K. Choi: Antimonite-based mid-infrared quantum well diode lasers. In: M.O. Manasreh (ed) Optoelectronic Properties of Semiconductors and Superlattices. Gordon and Beach, Amsterdam, 1997, pp. 369–431

    Google Scholar 

  15. C. Lin, M. Grau, O. Dier, M.C. Amann: Low threshold room-temperature continuouswave operation of 2.24–3.04 µm GaInAsSb/AlGaAsAb quantum well lasers. Appl. Phys. Lett. 84, 5088 (2004)

    Article  ADS  Google Scholar 

  16. J.R. Meyer, C.A. Hoffman, F.J. Bartoli: Type-II quantum-well lasers for the mid-wavelength infrared. Appl. Phys. Lett. 67, 757 (1995)

    Article  ADS  Google Scholar 

  17. J.R. Meyer, C.L. Felix, W.W. Bewley, I. Vurgaftman, E.H. Aifer, L.J. Olafsen, J.R. Lindle, C.A. Hoffman, M.J. Yang, B.R. Bennett B.V. Shanabrook, H. Lee, C.H. Lin, S.S. Pei, R.H. Miles: Auger coefficients in Type-II InAs/Ga1−xInxSb quantum wells. Appl. Phys. Lett. 74, 2857 (1998)

    Article  ADS  Google Scholar 

  18. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan: Band parameters for III–V compound semiconductors and their alloys. Appl. Phys. Rev. 89, 5815 (2001)

    Article  ADS  Google Scholar 

  19. C. Alibert, A. Joullié, A.M. Joullié: Modulation-spectroscopy study of the Ga1−xAlxSb band structure. Phys. Rev B 27, 4946 (1983)

    Article  ADS  Google Scholar 

  20. O. Madelung, W. Osten, U. Rössler: Intrinsic Properties of Group IV Elements and III–V, II–VI and I–VII Compounds. In: O. Madelung (ed.) Landolt-Börnstein New Series, Springer-Verlag, Berlin, 1987

    Google Scholar 

  21. K. Shim, H. Rabitz, P. Dutta: Band gap and lattice constant of GaxIn1−xAsySb1−y. J. Appl. Phys. 88, 7157 (2000)

    Article  ADS  Google Scholar 

  22. D.Z. Garbuzov, H. Lee, V. Khalfin, R. Martinelli, J. Connolly, G. Belenky: 2.3–2.7 µm Room Temperature CW Operation of InGaAsSb-AlGaAsSb Broad Waveguide SCH-QW Diode Lasers. IEEE Photon. Technol. Lett. 11, 794 (1999)

    Article  ADS  Google Scholar 

  23. C. Mermelstein, S. Simanowski, M. Mayer, R. Kiefer, J. Schmitz, M. Walther, J. Wagner: Room-temperature low-threshold low-loss continuous-wave operation of 2.26 µm GaInAsSb / AlGaAsSb quantum-well laser diodes. Appl. Phys. Lett 77, 1581 (2000)

    Article  ADS  Google Scholar 

  24. M. Grau, C. Lin, M.C. Amann: Room-Temperature 2.81-µm Continuous-Wave Operation of GaInAsSb-AlGaAsSb Laser. IEEE Photon. Technol. Lett. 16, 383 (2004)

    Article  ADS  Google Scholar 

  25. T. Chong, C. Fonstad: Theoretical gain of strained-layer semiconductor lasers in the high-strain regime. IEEE. J. Quantum Electron. 25, 171 (1989)

    Article  ADS  Google Scholar 

  26. S. Chuang: Efficient band-structure calculations of strained quantum wells. Phys. Rev. B 43, 9649 (1991)

    Article  ADS  Google Scholar 

  27. S. Corzine, R. Yan, L. Coldren: Optical gain in III–V bulk and quantum well semiconductors. In: P.S. Zory (ed.) Quantum well lasers. Academic Press, San Diego, 1986, pp.17–93

    Google Scholar 

  28. A. Ghiti, E. O’Reilly: Antimoni-based strained-layer 2-2.5 µm quantum well lasers. IEEE J. Quantum Electron. 27, 1347 (1991)

    Article  Google Scholar 

  29. M. Rattunde, C. Mermelstein, J. Schmitz, R. Kiefer, W. Pletschen, M. Walther, J. Wagner: Compehensive modeling of the electro-optical-thermal behavior of (AlGaIn)(AsSb)-based 2.0 µm diode lasers. Appl. Phys. Lett. 80, 4085 (2002)

    Article  ADS  Google Scholar 

  30. A. Salhi, Y. Rouillard, A. Pérona, P. Grech, M. Garcia, C. Sitori: Low-threshold GaInAsSb/AlGaAsSb quantum well laser diodes emitting near 2.3 µm. Semicond. Sci. Technol. 19, 260 (2004)

    Article  ADS  Google Scholar 

  31. M. Rattunde, C. Mermelstein, S. Simanowski, J. Schmitz, R. Kiefer, N. Herres, F. Fuchs, M. Walther, J. Wagner: Temperature sensitivity of high power GaSb based 2 µm diode lasers. In: M. Ilegems, G. Weimann, J. Wagner (eds.) Procceedings of the 29th Int. Symp. on Compound Semiconductors, IOP Publishing LTD, Bristol (UK) 2003, p.347 (Inst. Phys. Conf. Ser. no 174)

    Google Scholar 

  32. S. Simanowski, N. Herres, C. Mermelstein, R. Kiefer, J. Schmitz, M. Walther, J. Wagner, G. Weimann: Strain adjustment in (GaIn)(AsSb)/(AlGa)(AsSb) QWs for 2.3–2.7 µm laser structures. J. Cryst. Growth 209, 15 (2000)

    Article  ADS  Google Scholar 

  33. W. Li, J.B. Héroux, H. Shao, W.I. Wang: Strain-compensated InGaAsSb/ AlGaAsSb mid-infrared quantum-well lasers. Appl. Phys. Lett. 84, 2016 (2004)

    Article  ADS  Google Scholar 

  34. D.Z. Garbuzov, R.U. Martinelli, H. Lee, P.K. York, R.J. Menna, J.C. Connolly, S.Y. Narayan: Ultralow-loss broadened-waveguide high-power 2 µm AlGaAsSb/InGaAsSb/GaSb separate-confinement quantum-well lasers. Appl. Phys. Lett. 69, 2006 (1996)

    Article  ADS  Google Scholar 

  35. M. Rattunde, J. Schmitz, R. Kiefer, J. Wagner: Comprehensive analysis of the internal losses in 2.0 µm (AlGaIn)(AsSb) quantum-well diode lasers. Appl. Phys. Lett. 84, 4750 (2004)

    Article  ADS  Google Scholar 

  36. A. Baraldi, C. Grezzi, R. Magnanimi, A. Parigini, L. Tarricone, A. Cosacchi, S. Franchi, V. Avanzino, P. Allegri: Preparation of GaSb by molecular beam epitaxy and electrical and photoluminescence characterisation. Mat. Science and Engineering B 28, 174 (1994)

    Article  Google Scholar 

  37. J.G. Kim, L. Shterengas, R.U. Martinelli, G.L. Belenky: High-power room-temperature continuous wave operation of 2.7 and 2.8 µm In(Al)GaAsSb/GaSb diode lasers. Appl. Phys. Lett. 83, 1926 (2003)

    Article  ADS  Google Scholar 

  38. C. Mermelstein, M. Rattunde, J. Schmitz, S. Simanowski, R. Kiefer, M. Walther, J. Wagner: Sb-Based Mid-Infrared Diode Lasers. Mat. Res. Soc. Symp. Proc. 692, 365 (2002)

    Google Scholar 

  39. C.A. Wang, H.K. Choi: GaInAsSb/AlGaAsSb multiple-quantum-well diode lasers grown by organometallic vapor phase epitaxy. Appl. Phys. Lett. 70, 802 (1997)

    Article  ADS  Google Scholar 

  40. S. Simanowski, C. Mermelstein, M. Walther, N. Herres, R. Kiefer, M. Rattunde, J. Schmitz, J. Wagner, G. Weimann: Growth and layer structure optimization of 2.26 µm (AlGaIn)(AsSb) diode lasers for room temperature operation. J. Cryst. Growth 227–228, 595 (2001)

    Article  Google Scholar 

  41. A. Joullié, P. Christol, A.N. Baranov, A. Vicet: Mid-Infrared 2–5 µm Heterojunction Laser Diodes. In: I.T. Sorokina, K.L. Vodopyanov (ed.) Solid-State Mid-Infrared Laser Sources, Springer-Verlag, Berlin, 2003, pp. 1–59 (Topics in Applied Physics no. 89)

    Chapter  Google Scholar 

  42. K. Onabe: Unstable region in quaternary In1−xGaxAs1−ySby calculated using strictly regular solution approximation. Jpn. J. Appl. Phys. 21, 964 (1982)

    Article  ADS  Google Scholar 

  43. S.L. Chuang: Physics of optoelectronic devices. John Wiley & Sons, Inc, New York, 1995

    Google Scholar 

  44. B. Bennett, W. Moore, M. Yang, B. Shanabrook: Transport properties of Be-and Sidoped AlSb. J. Appl. Phys. 87, 7876 (2000)

    Article  ADS  Google Scholar 

  45. H.K. Choi, S.J. Eglash, M.K. Connors: Single-frequency GaInAsSb/AlGaAsSb quantumwell ridge-waveguide lasers emitting at 2.1 µm. Appl. Phys. Lett. 63, 3271 (1993)

    Article  ADS  Google Scholar 

  46. D.A. Yarekha, G. Gastre, A. Perona, Y. Rouillard, F. Genty, E.M. Skouri, G. Boissier, P. Grech, A. Joullié, C. Alibert, A.N. Baranov: High temperature GaInSbAs/GaAlSbAs quantum well single mode continuous wave lasers emitting near 2.3 µm. IEEE Electron. Lett. 36, 537 (2000).

    Article  Google Scholar 

  47. M. Hümmer, K. Rößner, A. Benkert, A. Forchel: GaInAsSb-AlGaAsSb Distributed Feedback Lasers Emitting Near 2.4 µm. IEEE Photon Technol. Lett. 16, 380 (2004)

    Article  ADS  Google Scholar 

  48. A.N. Baranov, Y. Rouillard, G. Boissier, P. Grech, S. Gaillard, C. Alibert: Sb-based monolithic vertical cavity surface emitting laser operating near 2.2 µm at room temperature. Electron. Lett. 34, 281 (1998)

    Article  Google Scholar 

  49. L. Cerutti, A. Garnache, F. Genty, A. Ouvrad, C. Alibert: Low threshold, roomtemperature laser diode pumped Sb-based VECSEL emitting around 2.1 µm. Electron. Lett. 39, 290 (2003)

    Article  Google Scholar 

  50. R.J. Menna, D.Z. Garbuzov, H. Lee, R.U. Martinelli, S.Y. Narayan, J.C. Connolly: High-power broadened-waveguide InGaAsSb/AlGaAsSb quantum-well diode lasers emitting at 2 µm. Proc. SPIE 3284, 238 (1998)

    Article  ADS  Google Scholar 

  51. H.K. Choi, J.N. Walpole, G.W. Turner M.K. Connors L.J. Missaggia, M.J. Manfra: GaInAsSb-AlGaAsSb Tapered Lasers Emitting at 2.05 µm with 0.6-W Diffraction-Limited Power. IEEE Photon. Technol Lett. 10, 938 (1998)

    Article  ADS  Google Scholar 

  52. J.N. Walpole, H.K. Choi, L.J. Missagia Z.L. Zia, M.K. Connors, G.W. Turner, M.J. Manfra, C.C. Cook: High-Power High-Brightness GaInAsSb-AlGaAsSb Tapered Laser Arrays with Anamorphic Collimating Lenses Emitting at 2.05 µm. IEEE Photon. Technol. Lett. 11, 1223 (1999)

    Article  ADS  Google Scholar 

  53. L.A. Coldren, S.W. Corzine: Diode Lasers and Photonic Integrated Circuits. John Wiley & Sons, New York, 1995

    Google Scholar 

  54. G. Turner, H. Choi, M. Manfra: Ultralow-threshold (50 A/cm2) strained single-quantumwell GaInAsSb/AlGaAsSb lasers emitting at 2.05 µm. Appl. Phys. Lett. 72, 876 (1998)

    Article  ADS  Google Scholar 

  55. D. Garbuzov, M. Maiorov, H. Lee, V. Khalfin, R. Martinelli, J. Connolly: Temperature dependence of continuous wave threshold current for 2.3–2.6 µm InGaAsSb/AlGaAsSb separate confinement heterostructure quantum well semiconductor diode lasers. Appl. Phys. Lett. 74, 2990 (1999)

    Article  ADS  Google Scholar 

  56. T. Newell, L. Lester, X. Wu, Y. Zhang: Gain and threshold current density characteristics of 2 micron GaInAsSb/AlGaAsSb MQW lasers with increased valence band offset. Proc. SPIE 3284, 258 (1998)

    Article  ADS  Google Scholar 

  57. P. Yu, M. Cardona: Fundamentals of Semiconductors. Springer-Verlag, Berlin (1996)

    MATH  Google Scholar 

  58. J. Piprek: Semiconductor Optoelectronic Devices. Academic Press, San Diego (2003)

    Google Scholar 

  59. I. Joindot, J. Beylat: Intervalence Band Absorption coefficient measurements in bulk layer, strained and unstrained multiquantum well 1.55 µm semiconductor lasers. Electron. Lett. 29, 604 (1993)

    Article  Google Scholar 

  60. G. Fuchs, J. Hörer, A. Hangleiter, V. Härle, F. Scholz, R. Glen, L. Goldstein: Intervalence band absorption in strained and unstrained InGaAs multiple quantum well structures. Appl. Phys. Lett. 60, 231 (1992)

    Article  ADS  Google Scholar 

  61. J. Piprek, P. Abraham, J.E. Bowers: Cavity Length Effects on Internal Loss and Quantum Efficiency of Multiquantum-Well Lasers. IEEE J. Sel. Top. Quantum Electron. 5, 643 (1999)

    Article  Google Scholar 

  62. J.G. Kim, L. Shterengas, R.U. Martinelli, G.L. Belenky, D.Z. Garbuzov, W.K. Chan: Room-temperature 2.5 µm InGaAsSb/AlGaAsSb diode lasers emitting 1 W continuous waves. Appl. Phys. Lett. 81, 3146 (2002)

    Article  ADS  Google Scholar 

  63. M. Rattunde, C. Mermelstein, S. Simanowski, J. Schmitz, R. Kiefer, N. Herres, F. Fuchs, M. Walther, J. Wagner: Temperature dependence of threshold current for 1.8 to 2.3 µm (AlGaIn)(AsSb)-based QW diode lasers. Proceedings of the 27th Int. Symp. on Compound Semiconductors, Institute of Electrical and Electronics Engineers, Inc. 2001, p.437

    Google Scholar 

  64. T. Newell, X. Wu, A.L. Gray, S. Dorato, H. Lee, L.F. Lester: The Effect of Increased Valence Band Offset on the Operation of 2 µm GaInAsSb-AlGaAsSb Lasers. IEEE Photon. Technol. Lett. 11, 30 (1999)

    Article  ADS  Google Scholar 

  65. H. Lee, P.K. York, R.J. Menna, R.U. Martinelli, D.Z. Garbuzov, S.Y. Narayan, J.C. Connolly: Room-temperature 2.78 µm AlGaAsSb/InGaAsSb quantum-well lasers. Appl. Phys. Lett. 66, 1942 (1995)

    Article  ADS  Google Scholar 

  66. L. Shterengas, G.L. Belenky, J.G. Kim, R.U. Martinelli: Design of high-power room-temperature continuous-wave GaSb-based Type-I quantum-well lasers with λ > 2.5 µm. Semicond. Sci. Technol. 19, 655 (2004).

    Article  ADS  Google Scholar 

  67. M. Rattunde, J. Schmitz, G. Kaufel, J. Wagner, to be published

    Google Scholar 

  68. D.V. Donetsky, D. Westerfeld, G.L. Belenky, R.U. Martinelli, D.Z. Garbuzov, J.C. Connolly: Extraordinarily wide optical gain spectrum in 2.2–2.5 µm In(Al)GaAsSb/GaSb quantum-well ridge-waveguide lasers. J. Appl. Phys. 90, 4281 (2001)

    Article  ADS  Google Scholar 

  69. E.A. Pease, L.R. Dawson, L.G. Vaughn, P. Rotella, L.F. Lester: 2.5–3.5 µm optically pumped GaInSb/AlGaInSb multiple quantum well lasers grown on AlInSb metamorphic buffer layers. J. Appl. Phys. 93, 3177 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Rattunde, M., Schmitz, J., Mermelstein, C., Kiefer, R., Wagner, J. (2006). III-Sb-based Type-I QW Diode Lasers. In: Krier, A. (eds) Mid-infrared Semiconductor Optoelectronics. Springer Series in Optical Sciences, vol 118. Springer, London . https://doi.org/10.1007/1-84628-209-8_3

Download citation

Publish with us

Policies and ethics