Skip to main content

Infrared Methods for Gas Detection

  • Chapter

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 118))

8 Conclusions

It might reasonably be expected that semiconductor devices would inevitably displace thermal devices in all aspects of gas sensing. However, thermal sources and detectors are inexpensive and suffice for a very wide range of gas sensing applications. The advent of thin film sources provided the necessary extended wavelength coverage beyond 4.5 µm compared with glass-envelope filament lamps, and the emitted power is generally higher for thermal sources.

Because of the complexity of fabricating semiconductor devices with the materials used, there is a significant economic barrier to them entering the marketplace. They do offer the advantages of being robust and having a long lifetime and, when used as both source and detector, much higher modulation frequencies are available. The temperature dependence of semiconductor devices is higher than thermal devices, which requires temperature stabilisation, or compensation. Incorporating a modest cooling with the temperature stabilisation in semiconductor devices would be advantageous but at the expense of electrical power and some complexity. It is, perhaps, where reliability is paramount that semiconductor systems are likely to be introduced.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. “Fundamentals of Molecular Spectroscopy”, Banwell C N (McGraw-Hill, 1983)

    Google Scholar 

  2. Infrared Analysis, Inc. (Anaheim, CA, USA) see www.infraredanalysisinc.com

    Google Scholar 

  3. US Environmental Protection Agency. See www.epa.gov

    Google Scholar 

  4. US National Institute of Standards and Technology. See www.nist.gov

    Google Scholar 

  5. “Techniques and Mechanisms in Gas Sensing”, Ed. Moseley P T, Norris J O W and Williams D E, Publ. IOP (1991)

    Google Scholar 

  6. Smith S D, “Design of multilayer filters by considering two effective interfaces”, J. Opt. Soc. Am. 48 43 (1958)

    Article  ADS  Google Scholar 

  7. Hawkeye Technologies (Connecticut, USA), see www.hawkeyetechnologies.com

    Google Scholar 

  8. Leister Microsystems (Sarnen, Switzerland), see www.leister.com/english/leister_english.html

    Google Scholar 

  9. Cal Sensors Inc. (California, USA), see www.calsensors.com

    Google Scholar 

  10. Ion Optics (Mass., USA), see www.ion-optics.com

    Google Scholar 

  11. Alpes Lasers (Neuchatel, Switzerland), see www.alpeslasers.ch

    Google Scholar 

  12. Smith S D, Hardaway H R & Crowder J G, “Recent developments in the applications of mid-infrared lasers, LEDs, and other solid state sources to gas detection”, Proc. SPIE 4651 157–172, May 2002.

    Article  ADS  Google Scholar 

  13. M.J. Kane, G. Braithwaite, M.T. Emeny, D. Lee, T. Martin, D.R. Wright, “Bulk and surface recombination in InAs/AlAsSb 3.45µm light emitting diodes”, Appl.Phys.Lett. 76(8) 2000, p.943–945

    Article  ADS  Google Scholar 

  14. T. Ashley, C.T. Elliott, N.T. Gordon, R.S. Hall, A.D. Johnson, G.J. Pryce, “Room temperature narrow gap semiconductor diodes and sources and detectors in the 5–10µm wavelength region.”. J.Crystal Growth 156, 1996, p.1100–1103

    Article  Google Scholar 

  15. A. Popov, V.V. Sherstnev, Y.P. Yakovlev, A.N. Baranov, “Powerful mid-infrared light emitting diodes for pollution monitoring”, Electron. Lett. 33(1) 1997, pp 86–88

    Article  Google Scholar 

  16. A. Krier, V.V. Sherstnev, “Powerful interface light emitting diodes for methane detection” J.Phys.D:Appl.Phys. 33, 2000, p.101–106

    Article  ADS  Google Scholar 

  17. A. Krier, V.V. Sherstnev, H.H. Gao, “A novel LED module for the detection of H2S” J.Phys.D:Appl.Phys. 33, 2000, p.1656–16661

    Article  ADS  Google Scholar 

  18. V.V. Sherstnev, A.M. Monahov, A. Krier, G. Hill, “Superluminescence in InAsSb circular-ring-mode light emitting diodes for CO gas detection” Appl.Phys.Lett. 77(24) 2000, p.3908–3910

    Article  ADS  Google Scholar 

  19. A. Krier, H.H. Gao, V.V. Sherstnev, Y. Yakovlev, “High power 4.6µm light emitting diodes for CO detection” J.Phys.D: Apll.Phys. 32, 1999, p.3117–3121

    Article  ADS  Google Scholar 

  20. X.Y. Gong, H. Kan, T. Makino, T. Iida, K. Watanbe, Y.Z. Gao, M. Aoyama, N.L. Rowell, T. Yamaguchi, “Room-temperature mid-infrared light-emitting diodes from LPE InAs/InAsSb/InAsSbP heterostrucutres” Jpn.J.Appl.Phys. 39, 2000, p.5039–5043

    Article  ADS  Google Scholar 

  21. X.Y. Gong et al, “Light emitting diodes fabricated from liquid phase epitaxy InAs/InAsSbP/InAsSbP and InAs/InAsSb multi-layers” Cryst.Res.Technol. 35(5) 2000, p.549–555.

    Article  Google Scholar 

  22. X. Li, J. Heber, M. Pullin, D. Gevaux, C.C. Phillips, “MBE growth of mid-infrared antimonide LEDs with strained electron barriers, Journal.Crystal Growth, 227, 2001, p.600–604

    Article  ADS  Google Scholar 

  23. P.J.P. Tang, H.R. Hardaway, J. Heber, C.C. Phillips, M.J. Pullin, R.A. Stradling, W.T. Yuen, L. Hart, “Efficient 300K light emitting diodes at 5 and 8µm from InAs/InAsSb single quantum wells” Appl.Phys.Lett. 72(26) 1998, p.3473–3475

    Article  ADS  Google Scholar 

  24. M.J. Pullin, H.R. Hardaway, J.D. Heber, C.C. Phillips, W.T. Yuen, Ra.A. Stradling, P. Moeck, “Room-temperature InAsSb strained layer superlattice light emitting diodes at λ=4.2µm with AlSb barriers for improver carrier confinement”, Appl.Phys.Lett. 74(16) 1999, p.2384–2386

    Article  ADS  Google Scholar 

  25. B. Gietens, S. Nemeth, C. Van Hoof, P. Van Daele, G. Borghs, “Growth and characterisation of InAsSb/InAs strained multiple quantum well light emitting diodes grown on InAs substrates” IEE Porc.-Optoelecton. 144(5) 1997, p.295–298

    Article  Google Scholar 

  26. R.M. Biefeld, S.R. Kurtz, A.A. Allerman, “The metal-organic chemical vapour deposition growth and properties of InAsSb mid-infrared (3–6µm) lasers and LEDs” 3(3) 1997, p.739–748

    Google Scholar 

  27. “Demonstration of the cascade process in InAs/GaInSb/AlSb mid-infrared light emitting devices” Appl.Phys.Lett. 72(12) 1998, p.1495–1497

    Google Scholar 

  28. Gevaux DG, Green AM, Phillips CC, Vurgaftman I, Bewley WW, Felix CL, Meyer JR, Lee H, Martinelli RU, “3.3 µm ‘W’ quantum well light emitting diode”, IEE P-Optoelectron 150 351–355 (2003)

    Article  Google Scholar 

  29. Lindle JR, Bewley WW, Vurgaftman I, Kim CS, Meyer JR, Johnson JL, Thomas ML, Piquette EC, Tennant WE, “Negative luminescence from large-area HgCdTe photodiode arrays with 4.8–6.0 µm cutoff wavelengths”, IEEE J Quantum Elect 41 227–233 (2005)

    Article  ADS  Google Scholar 

  30. Lindle JR, Bewley WW, Vurgaftman I, Meyer JR, Varesi JB, Johnson SM, “Negative luminescence from MWIR HgCdTe/Si devices”, IEE P-Optoelectron 150 365–370 (2003)

    Article  Google Scholar 

  31. L. J. Olafsen et al, “Negative luminescence from type II InAs/GaSb superlattice photodiodes”, Appl.Phys.Lett 74(18), 1999, pp2681–2683

    Article  ADS  Google Scholar 

  32. Nash GR, Gordon NT, Hall DJ, Ashby MK, Little JC, Masterton G, Hails JE, Gless J, Haworth L, Emeny MT, Ashley T, “Infrared negative luminescent devices and higher operating temperature detectors”, Physica E-Low-dimensional systems & nanostructures 20 540–547 (2004)

    Article  ADS  Google Scholar 

  33. Remennyi MA, Matveev BA, Zotova NV, Karandashev SA, Stus NM, Talalakin GN, “InGaAsSb negative luminescent devices with built-in cavities emitting at 3.9 µm”, Phsica E 20 548–552 (2004)

    Article  ADS  Google Scholar 

  34. T. Ashley, N. T. Gordon, G. R. Nash, C. L. Jones, C. D. Mazey and R. A. Catchpole, “Long wavelength HgCdTe negative luminescent devices”, Appl. Phy. Lett. 79, no.8, pp1136–1138, 2001

    Article  ADS  Google Scholar 

  35. Haigh MK, Nash GR, Gordon NT, Edwards J, Graham A, Giess J, Hails JE, Houlton M, “Long-wavelength HgCdTe on silicon negative luminescent devices”, Appl. Phys. Lett. 86 011910 (2005)

    Article  ADS  Google Scholar 

  36. M Aidaraliev, N V Zotova, S A Karandashev, B A Matveev, M A Remennyi, N M Stus and G N Talalakin, “Optically Pumped “Immersion-Lens” Infrared Light Emitting Diodes Based on Narrow-Gap III–V Semiconductors”, Semiconductors, vol 36, No. 7, pp828–831, 2002.

    Article  ADS  Google Scholar 

  37. Zotova NV, Karandashev SA, Matveev BA, Remennyi MA, Stus’ NM, Tarakanova NG, “Luminescence of multilayer structures based on InAsSb at lambda=6–9 µm”, Semiconductors 39 214–217 (2005)

    Article  ADS  Google Scholar 

  38. Nash GR, Ashley T, Gordon NT, Jones CL, Maxey CD, Catchpole RA, “Micromachined optical concentrators for IR negative luminescent devices”, J. Mod. Optics 49 811–820 (2002)

    Article  ADS  Google Scholar 

  39. E. Hadji, J. Bleuse, N. Magnea, J.L. Pautrat, “3.2µm infrared resonant cavity light emitting diodes” Appl.Phys.Lett. 67(18) 1995, p.2591–2593

    Article  ADS  Google Scholar 

  40. Green AM, Gevaux DG, Roberts C, Phillips CC, “Resonant-cavity-enhanced photodetectors and LEDs in the mid-infrared”, Physica E 20 531–535 (2004)

    Article  ADS  Google Scholar 

  41. Green AM, Gevaux DG, Roberts C, Stavrinou PN, Phillips CC, “lambda approximate to 3 µm InAs resonant-cavity-enhanced photodetector”, Semicond. Sci. Tech. 18 964–967 (2003)

    Article  ADS  Google Scholar 

  42. Matveev BA, Aydaraliev M, Zotova NV, Karandashev SA, Il’inskaya ND, Remennyi MA, Stus’ NM, Talalakin GN, “Flip-chip bonded InAsSbP and InGaAs LEDs and detectors for the 3µm spectral region”, IEE P-Optoelectron 150 356–359 (2003)

    Article  Google Scholar 

  43. Chakrabarti P, Krier A, Morgan AF, “Analysis and simulation of a mid-infrared P+-InAs0.55Sb0.15P0.30/n(0)-InAs0.89Sb0.11/N+-InAs0.55Sb0.15P0.30 double heterojunction photodetector grown by LPE”, IEEE T Electron Dev 50 2049–2058 (2003)

    Article  ADS  Google Scholar 

  44. Chakrabarti P, Krier A, Morgan AF, “Double-heterojunction photodetector for mid-infrared applications: theoretical model and experimental results”, Opt. Eng. 42 2614–2623 (2003)

    Article  ADS  Google Scholar 

  45. T Ashley, C T Elliott and A T Harker, Infrared Phys. 26 303 (1986)

    Article  ADS  Google Scholar 

  46. M K Haigh, G R Nash, N T Gordon, J Edwards, A Graham, J Giess, J E Hails and M Houlton, Appl Phys Lett 86 011910 (2005)

    Article  ADS  Google Scholar 

  47. Ashby MK, Gordon NT, Elliott CT, Jones CL, Maxey CD, Hipwood L, Catchpole R, “Investigations into the source of 1/f noise in HgxCd1-xTe diodes”, J. Electron. Mat. 33 757–760 (2004)

    Article  ADS  Google Scholar 

  48. Crowder JG, Elliott CT, Hardaway HR, “High performance, large area, uncooled detectors for mid-infrared wavelengths”, Electron. Lett. 37 116–118 (2001)

    Article  Google Scholar 

  49. Hall DJ, Buckle L, Gordon NT, Giess J, Hails JE, Cairns JW, Lawrence RM, Graham A, Hall RS, Maltby C, Ashley T, “High-performance long-wavelength HgCdTe infrared detectors grown on silicon substrates”, Appl. Phys. Lett. 85 2113–2115 (2004)

    Article  ADS  Google Scholar 

  50. Crowder J G, Hardaway H R & Elliott C T. “Mid-Infrared Gas Detection using Optically-Immersed, Room Temperature, Semiconductor Devices”, Meas. Sci. Technol. 13 (2002) 882–884

    Article  ADS  Google Scholar 

  51. “High Collection Nonimaging Optics”, W T Welford and R Winston (Academic Press, 1989)

    Google Scholar 

  52. Pidgeon C R and Smith S D, “Resolving Power of Multilayer Filters in non-parallel light”, J. Opt. Soc. Am. 54 1459 (1964)

    Article  ADS  Google Scholar 

  53. Y. B. He and B. J. Orr, “Cavity ringdown spectroscopy: New approaches and outcomes”, J. Chin. Chem. Soc. 48(3) pp 591–601 2001.

    Google Scholar 

  54. L. A. Pakhomycheva, E. A. Svirichenkov, A. F. Suchkov, L. V. Titova, and S. S. Churilov, JETP, Lett 12,4, 1970.

    Google Scholar 

  55. A. Garnache, A. A. Kachanov, F. Stoeckel, and R. Planel “High sensitivity intracavity laser absorption spectroscopy with vertical-external-cavity surface emitting semiconductor lasers”, Optics Letters, 24 826–828, 1999

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Crowder, J.G., Smith, S.D., Vass, A., Keddie, J. (2006). Infrared Methods for Gas Detection. In: Krier, A. (eds) Mid-infrared Semiconductor Optoelectronics. Springer Series in Optical Sciences, vol 118. Springer, London . https://doi.org/10.1007/1-84628-209-8_18

Download citation

Publish with us

Policies and ethics