Skip to main content

Quantum Photovoltaic Devices Based on Antimony Compound Semiconductors

  • Chapter
Mid-infrared Semiconductor Optoelectronics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 118))

  • 2515 Accesses

7 Conclusion

In summary, we have successfully developed the empirical tight-binding modeling for the design of Type II InAs/GaSb superlattices. We have demonstrated very high quality superlattice material growths using state-of-the-art MBE. With our established device processing techniques, we demonstrated high performance photodiodes and the world’s first infrared focal plane array in the LWIR range based on this type of superlattice. We also calculated the wavelength variations based on quantum confinement effects in the nanopillars and demonstrated the initial results for the processing of nanopillar photodiodes based on Type II superlattices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Herschel, Phil. Trans. 255 (1800)

    Google Scholar 

  2. W. Herschel, Phil Trans. 284 (1800)

    Google Scholar 

  3. G. A. Sai-Halasz, R. Tsu, and L. Esaki, Appl. Phys. Lett. 30, 651 (1977)

    Article  ADS  Google Scholar 

  4. G. A. Sai-Halasz, L. L. Chang, J. M. Welter, and L. Esaki, Solid State Commun. 27, 935 (1978)

    Article  ADS  Google Scholar 

  5. G. A. Sai-Halasz, L. Esaki, Phys. Rev. B 18, 2812 (1978)

    Article  ADS  Google Scholar 

  6. J. C. Slater and G. F. Koster, Phys. Rev., 94(6), 1498–1524 (1954)

    Article  MATH  ADS  Google Scholar 

  7. P. Löwdin, J. Chem. Phys., 18(3), 365–375 (1950)

    Article  ADS  Google Scholar 

  8. P. Vogl, H. P. Hjalmarson, J. D. Dow, J. Phys. Chem. Solids, 44(5), 365–378 (1983)

    Article  ADS  Google Scholar 

  9. D. N. Talwar and J. P. Loehr, B. Jogai, Phys. Rev. B, 49(15), 10345–10353 (1994)

    Article  ADS  Google Scholar 

  10. L. C. Lew Yan Voon, Dissertation, WPI, Worcester, MA (1993)

    Google Scholar 

  11. J. Steinshnider, M. Weimer, R. Kaspi, and G. W. Turner, Phys. Rev. Lett. 85(14), 2953–2956 (2000)

    Article  ADS  Google Scholar 

  12. R. Magri, and A. Zunger, Phys. Rev. B, 65(16), 165302 (2002)

    Article  ADS  Google Scholar 

  13. J. Steinshnider, J. Harper, M. Weimer, C. H. Lin, S. S. Pei, D. H. Chow, Phys. Rev. Lett. 85(21), 4562–4565 (2000)

    Article  ADS  Google Scholar 

  14. W. A. Harrison, “Electronic Structure and the Properties of Solids: the Physics of the Chemical Bond”, Dover Publications Inc., ISBN: 0-486-66021-4 (1989)

    Google Scholar 

  15. O. Madelung, W. von der Osten, U. Rössler, “Landolt-Börnstein New Series”, Group III, Vol 22(a), ISBN: 0-387-16609-2, (1987)

    Google Scholar 

  16. C. G. Van de Walle, Phys. Rev. B 39(3) 1871–1883 (1989)

    Article  ADS  Google Scholar 

  17. H. Mohseni, Y. Wei, M. Razeghi, Proc. SPIE, 4288, 191–199 (2001)

    Article  ADS  Google Scholar 

  18. M. Razeghi, Y. Wei, A. Gin, A. David, Proc. of Electrochemical Society, 2002-14 88–97 (2002)

    Google Scholar 

  19. G. Bastard, Phys. Rev. B 25, 7584 (1982)

    Article  ADS  Google Scholar 

  20. F. Fuchs, L. Burkle, W. Pletschen, J. Schmitz, M. Walther, H. Gullich, N. Herres, and S. Mueller, Proc. SPIE 3794, 41 (1999).

    Article  ADS  Google Scholar 

  21. A. P. Ongstad, R. Kaspi, and C. E. Moeller; M. L. Tilton, D. M. Gianardi, and J. R. Chavez; G. C. Dente, J. Appl. Phys. 89(4), 2185 (2001)

    Article  ADS  Google Scholar 

  22. M. Razeghi, MOCVD Challenge, Volume I, Institute of Physics Pub (1995)

    Google Scholar 

  23. C. L. Canedy, W. W. Bewley, C. S. Kim, M. Kim, I. Vurgaftman, and J. R. Meyer, J. Appl. Phys. 94, 1347 (2003)

    Article  ADS  Google Scholar 

  24. M. Razeghi, Y. Wei, A. Gin, G. J. Brown, and D. K. Johnstone, Proc. SPIE, 4650, 111–116 (2002)

    Article  ADS  Google Scholar 

  25. F. Ren, W. S. Hobson, J. R. Lothian, J. Lopata, J. A. Caballero, S. J. Pearton and M. W. Cole, Appl. Phys. Lett., 67(17), 2497–2499 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Wei, Y., Gin, A., Razeghi, M. (2006). Quantum Photovoltaic Devices Based on Antimony Compound Semiconductors. In: Krier, A. (eds) Mid-infrared Semiconductor Optoelectronics. Springer Series in Optical Sciences, vol 118. Springer, London . https://doi.org/10.1007/1-84628-209-8_16

Download citation

Publish with us

Policies and ethics