Skip to main content

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 118))

6 Summary

Negative luminescent devices have progressed immensely in the 40 years since the first observation of the effect in semiconductors. Most of the progress during the first 30 years was achieved through the use of the magnetoconcentration effect. The progress has gained pace in the last ten years following the establishment of high quality epitaxial growth techniques for the narrow-gap semiconductors, which have enabled complex diode structures to be formed, so enabling negative luminescence to be produced in large area devices without the need for a magnetic field. The technology has now progressed to the point where practical devices for a number of applications are beginning to be implemented. Consequently, the future looks cool for negative luminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonov-Romanovsky VV, Stepanov BI, Fok MV and Khapalyuk AP. Vykhod lyuminestsentsii sistemy s tremya urovnyami energii so. Dokl. Acad. Nauk SSSR. 1955; 105:50–53

    Google Scholar 

  2. Ivanov-Omskii VI, Kolomiets BT and Smirnov VA. Recombination radiation in InSb due to the Magnetoconcentration Effect. Sov. Phys. Dokl. 1965; 10:345–346

    ADS  Google Scholar 

  3. Ivanov-Omskii VI, Kolomiets BT, and Smirnov VA. Spectrum of electroluminescence in InSb. Sov. Phys. JETP Lett. 1966; 3:185–187

    ADS  Google Scholar 

  4. Kessler FR and Mangelsdorf JW. Recombination radiation of germanium by free-carrier compression in crossed electric and magnetic fields. Phys. Stat. Sol. 1974; 24:557–564

    Article  ADS  Google Scholar 

  5. Kessler FR and Mangelsdorf JW. Free carrier compression and galvanomagnetic luminescence of germanium at high Lorentz fields. Phys. Stat. Sol. 1981; 105:525–535

    Article  ADS  Google Scholar 

  6. Bolgov SS, Malyutenko VK and Pipa VI. “Negative luminescence” in semiconductors. Sov. Tech. Phys. Lett. 1979; 5:610–611

    Google Scholar 

  7. Bolgov SS, Malyutenko VK and Pipa VI. Luminescence of semiconductors under carrier deficiency conditions. Sov. Phys. Semicond. 1983; 17:134–137

    Google Scholar 

  8. Malyutenko VK, Bolgov SS and Yablonovsky EI. A new type of IR luminescence. Infrared Phys. 1985; 25:115–119

    Article  ADS  Google Scholar 

  9. Berdahl P, Malyutenko V and Morimoto T. Negative luminescence of semiconductors. Infrared Phys. 1989; 29:667–672

    Article  ADS  Google Scholar 

  10. Bewley WW, Jurkovic MJ, Felix CL et al. HgCdTe photodectors with negative luminescent efficiencies > 80%. Appl. Phys. Lett. 2001; 78:3082–3084

    Article  ADS  Google Scholar 

  11. Gordon NT, Jones CL and Purdy DJ. Application of microlenses to infrared detector arrays. Infrared Phys. 1991; 31:599–604

    Article  ADS  Google Scholar 

  12. Ashley T, Dutton DT, Elliott CT, Gordon NT and Phillips TJ. Optical concentrators for light emitting diodes, Proc. SPIE 1998; 3289:43–50

    Article  ADS  Google Scholar 

  13. Welford, WT and Winston R. The optics of non-imaging concentrators. Academic Press, New York, 1978.

    Google Scholar 

  14. Ashley T, Gordon NT and Phillips TJ. Optical modelling of cone concentrators for positive and negative IR emitters. J. Mod. Optics 1999; 46:1677–1696

    Article  ADS  Google Scholar 

  15. Nash GR, Gordon NT, Ashley T, Emeny MT and Burke TM. Large-area IR negative luminescent devices. IEE Proc.: Optoelectron. 2003; 150:371–375

    Article  Google Scholar 

  16. Malyutenko VK, Pipa VI, Yablonovsky EI and Kolesnikov IV. Negative-luminescence spectrum of InSb. Sov. Phys. Semicond. 1990; 24:544–547

    Google Scholar 

  17. Malyutenko VK, Yablonovsky EI, Bolgov SS, Beketov GV and Salyuk OY. Negative luminescence of CdxHg1−xTe. Sov. Phys. Semicond. 1984; 18:211–212

    Google Scholar 

  18. Bolgov SS, Malyutenko VK, Pipa VI and Savchenko AP. Galvanomagnetic infrared luminescence of varying gap CdxHg1−xTe/CdTe structures. Infrared Phys. 1992; 33:409–416

    Article  ADS  Google Scholar 

  19. Morimoto T and Chiba M. Infrared emission from n-InSb under crossed electric and magnetic fields. Phys. Lett. 1981; 85A:395–398

    ADS  Google Scholar 

  20. Morimoto T and Chiba M. Characteristics of Luminescence from InSb magnetoinfrared-emitting diode. Jap. J. Appl. Phys. 1984; 23:L821–L823

    Article  ADS  Google Scholar 

  21. Berdahl P. Galvanomagnetic luminescence and the quantum efficiency of radiative recombination of InSb. J. Appl. Phys. 1988; 63:5846–5858

    Article  ADS  Google Scholar 

  22. Berdahl P and Shaffer L. Galvanomagnetic luminescence of indium antimonide. Appl. Phys. Lett. 1985;47:1330–1332

    Article  ADS  Google Scholar 

  23. Malyutenko VK, Bolgov SS and Malyutenko OYu. Multielement IR Sources with Alternating Contrast. Tech. Phys. Lett. 2001; 27:644–646

    Article  ADS  Google Scholar 

  24. Malyutenko VK, Bolgov SS and Malyutenko OYu. Two-dimensional InSb array of IR emitters with alternating contrast. Infrared Phys. Technol. 2003; 44:11–15

    ADS  Google Scholar 

  25. Bolgov SS and Malyutenko OYu. Alternate contrast pixel-less IR image simulator. Infrared Phys. Technol. 2004; 45:249–252

    Article  ADS  Google Scholar 

  26. Malyutenko VK, Yablonovsky EI, Savchenko AP, Bilinets YY and Kabatsy VN. Luminescence of InAs under magnetic injection conditions. Sov. Phys. Semicond. 1988; 22:370–372

    Google Scholar 

  27. Berdahl P. Radiant refrigeration by semiconductor diodes. J. Appl. Phys. 1985; 58:1369–1373

    Article  ADS  Google Scholar 

  28. Bolgov SS, Malyutenko VK, Pipa VI and A.P Savchenko. Exclusion and accumulation of charge-carriers in narrow-band semiconductors at high temperatures. Pis’ma ZhTF 1989; 15:49–53

    Google Scholar 

  29. Ashley T, Elliott CT, Gordon, NT, Hall RS, Johnson AD and Pryce G.J. Negative Luminescence from In1−xAlxSb and CdxHg1−xTe diodes. Infrared Phys. Technol. 1995; 36:1037–1044

    Article  ADS  Google Scholar 

  30. Nash GR, Gordon NT, Hall DJ et al. Infrared negative luminescent devices and higher operating temperature detectors. Physica E 2004; 20:540–547

    Article  ADS  Google Scholar 

  31. Lindle JR, Bewley WW, Vurgaftman I, Meyer JR, Varesi JB and Johnson SM. Efficient 3–5 µm negative luminescence from HgCdTe/Si photodiodes. Appl. Phys. Lett. 2003; 82:2002–2004

    Article  ADS  Google Scholar 

  32. Bewley WW, Lindle JR, Vurgaftman I et al. Negative luminescence with 93% efficiency from midwave infrared HgCdTe diode arrays. Appl. Phys. Lett. 2003; 83:3254–3256

    Article  ADS  Google Scholar 

  33. Lindle JR, Bewley WW, Vurgaftman I et al. Negative luminescence from mid-wave infrared HgCdTe diode arrays. Physica E 2004; 20:558–562

    Article  ADS  Google Scholar 

  34. Lindle JR, Bewley WW, Vurgaftman I et al. A 5 mm · 5 mm mid-wavelength infrared HgCdTe photodiode array with negative luminescence efficiency >95%. J. Electron. Mat. 2004;33:600–603

    Article  ADS  Google Scholar 

  35. Nash GR, Ashley T, Gordon NT, Jones CL, Maxey CD and Catchpole RA. Large Area IR Negative Luminescent Devices. Proc. SPIE 2003; 4820:132–139

    Article  Google Scholar 

  36. Lindle JR, Bewley WW, Vurgaftman I et al. Negative Luminescence from Large-Area HgCdTe Photodiode Arrays with 4.8–6.0 µm cut-off Wavelengths. IEEE J. Quant. Electron. 2005; 41:227–233

    Article  ADS  Google Scholar 

  37. Ashley T, Gordon NT, Nash GR, Jones CL, Maxey CD and Catchpole RA. Long-wavelength HgCdTe negative luminescent devices. Appl. Phys. Lett. 2001; 79:1136–1138

    Article  ADS  Google Scholar 

  38. Nash GR, Ashby MK, Lindle JR et al. Long wavelength infrared negative luminescent devices with strong Auger suppression. J. Appl. Phys. 2003; 94:7300–7304

    Article  ADS  Google Scholar 

  39. Haigh MK, Nash GR, Gordon NT et al. Long-wavelength HgCdTe on silicon negative luminescent devices. Appl. Phys. Lett. 2005; 86: 011910

    Article  ADS  Google Scholar 

  40. Nash GR, Ashley T, Gordon NT, Jones CL, Maxey CD and Catchpole RA. Micromachined optical concentrators for IR negative luminescent devices. J. Mod. Opt. 2002; 49:811–820

    Article  ADS  Google Scholar 

  41. Pullin MJ, Hardaway HR, Heber JD and Phillips CC. Type-II InAs/InAlSb strained-layer-superlattice negative luminescent devices. Appl. Phys. Lett. 1999; 75:3437–3439

    Article  ADS  Google Scholar 

  42. Pullin MJ, Hardaway HR, Heber JD et al. Room-temperature InAsSb strained-layer superlattice light-emitting diodes at κ=4.2 µm with AlSb barriers for improved carrier confinement. Appl. Phys. Lett. 1999; 74:2384–2386

    Article  ADS  Google Scholar 

  43. Olafsen LJ, Vurgaftman I, Bewley WW et al. Negative luminescence from type-II InAs/GaSb superlattice photodiodes. Appl. Phys. Lett. 1999; 74:2681–2683

    Article  ADS  Google Scholar 

  44. Aidaraliev M, Zotova NV, Karandashev SA et al. Negative Luminescence in p-InAsSbP/n-InAs diodes. Semiconductors 2001; 35:321–324

    Article  ADS  Google Scholar 

  45. Matveev BA, Aydaraliev M, Zotova NV et al. Negative luminescence from InAsSbP based diodes in the 4.0–4.3 µm range. Proc. SPIE. 2001; 4285:109–117

    Article  ADS  Google Scholar 

  46. Matveev BA, Zotova NV, Karandashev SA, Remennyi MA, Stus NM and Talalakin GN. Towards longwave (5–6 µm) LED operation at 80C: injection or extraction of carriers? IEE Proc.: Optoelectron. 2002; 149:33–35

    Article  Google Scholar 

  47. Matveev BA, Zotova NV, Karandashev SA, Remennyi MA, Stus NM and Talalakin GN. Towards efficient mid-IR LED operation: extraction or injection extraction of carriers? J. Mod. Opt. 2002; 49:743–756

    Article  ADS  Google Scholar 

  48. Malyutenko VK, Malyutenko OYu, Podoltsev AD et al. Current crowding in InAsSb light-emitting diodes. Appl. Phys. Lett. 2001; 79:4228–4230

    Article  ADS  Google Scholar 

  49. Aidaraliev M, Zotova NV, Il’inskaya ND et al. InAs and InAsSb LEDs with built-in cavities. Semi. Sci. Technol. 2003; 18:269–272

    Article  ADS  Google Scholar 

  50. Bolgov SS, Malyutenko VK and Savchenko AP. Charge-carrier exclusion in InAs. Semiconductors 1997; 31:444–445

    Article  ADS  Google Scholar 

  51. Beattie AR and White AM. An analytic approximation with a wide range of applicability for electron initiated Auger transitions in narrow-gap semiconductors. J. Appl. Phys. 1996; 79:802–813

    Article  ADS  Google Scholar 

  52. Ashley T, Elliott CT, Gordon NT, Phillips TJ and Hall RS. Applications of negative luminescence. Infrared Phys. Technol. 1997; 38:145–151

    Article  ADS  Google Scholar 

  53. Malyutenko VK. Negative Luminescence in semiconductors: a retrospective view. Physica E. 2004; 20:553–557

    Article  ADS  Google Scholar 

  54. Ashley T, Crowder JG, Mannheim VP and Smith SD. Infrared light emitting diodes. GB Patent No. 2346481, filed 1998

    Google Scholar 

  55. Ashley T, Elliott CT and Gordon NT. Dynamic infrared scene projector. GB Patent No. 2319664. filed 1995

    Google Scholar 

  56. Nash GR, Gordon NT, Emeny MT and Ashley T. Perspectives on dynamic infrared scene projection using positive and negative luminescence. Proc SPIE. 2003; 5092:138–144

    Article  ADS  Google Scholar 

  57. Berdahl P. Proc. 18th Int. Conf. on Physics of Semiconductors (Ed. O. Engstrom) 1987; 2:1595

    Google Scholar 

  58. Liptuga AI, Malyutenko VK, Pipa VI and Levash LV. Radiative cooling under the conditions of magnetoconcentration. Semiconductors 1997; 31:423–426

    Article  ADS  Google Scholar 

  59. Ashley T, Elliott CT, Gordon NT and Hall RS. Infrared optical system. GB Patent No. 0861426 filed 1995

    Google Scholar 

  60. Ashley T, Elliott CT, Gordon NT and Hall RS. Black level clamp for scanned thermal imaging systems. GB Patent Application No. 9520060.6 filed 1995

    Google Scholar 

  61. Ashley T, Elliott CT, Gordon NT and Hall RS. Thermal imaging system. GB Patent No. 2317779 filed 1995

    Google Scholar 

  62. Elliott CT, Ashley T and Dutton DT. How to look cool — controlling the infrared. Brochure produced for a Royal Society meeting 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Ashley, T., Nash, G.R. (2006). Negative Luminescence. In: Krier, A. (eds) Mid-infrared Semiconductor Optoelectronics. Springer Series in Optical Sciences, vol 118. Springer, London . https://doi.org/10.1007/1-84628-209-8_14

Download citation

Publish with us

Policies and ethics