Skip to main content

QWIP Detectors for the MWIR

  • Chapter

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 118))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borman, S. Array detectors are transforming optical spectroscopy. C&E News, Mar. 18, 1996.

    Google Scholar 

  2. Rogalski A. Quantum well photodetectors in infrared detector technology. J. Appl. Phys. 2003; 93: 4355–4391

    Article  ADS  Google Scholar 

  3. Rogalski A. Infrared detectors: An overview. Infrared Phys. Technol. 2002; 43:187–210.

    Article  ADS  Google Scholar 

  4. Schneider H, Walther M, Schönbein C, Rehm R, Fleissner J, Pletschen W, Braunstein J, Koidl P, Weimann G, Ziegler J, and Cabanski W. QWIP FPAs for high-performance thermal imaging. Physica E. 2000; 7: 101–107.

    Article  ADS  Google Scholar 

  5. Nash GR, Gordon NT, Hall DJ, Ashby MK, Little JC, Masterton G, Hails JE, Giess J, Haworth L, Emeny MT, Ashley T. Infrared negative luminescent devices and higher operating temperature detectors. Physica E 2004; 20:540–547.

    Article  ADS  Google Scholar 

  6. Liu HC, Buchanan M, Wasilewski ZR. How good is the polarization selection rule for intersubband transitions? Appl. Phys. Lett. 1998; 72:1682–1684.

    Article  ADS  Google Scholar 

  7. Liu HC, Dudek R, Shen A, Dupont E, Song, CY, Wasilewski ZR, Buchanan M. High absorption (>90%) quantum-well infrared photodetectors. Appl. Phys. Lett. 2001; 79:4237–4239

    Article  ADS  Google Scholar 

  8. Hirayama Y, Smet JH, Peng L-H, Fonstad CG, Ippen EP. Feasibility of 1.55µm intersubband photonic devices using InGaAs/AlAs pseudomorphic quantum well structures. Jpn. J. Appl. Phys. Part 1 1994; 33:890–895.

    Article  ADS  Google Scholar 

  9. Lee JH, Chiang JC, Li SS, and Kannam PJ. An AlAs/InGaAs/AlAs/InAlAs double-barrier quantum well infrared photodetector operating at 3.4 µm and 205K. Appl. Phys. Lett. 1999; 74:765–767.

    Article  ADS  Google Scholar 

  10. Lai KT, Missous M, Gupta R and Haywood SK. Intersubband absorption in strain-compensated InAlAs/AlAs/InxGa(1−x)As quantum wells grown on InP. J. Appl. Phys. 2003; 93: 6065–6067

    Article  ADS  Google Scholar 

  11. Burkle L, Fuchs F. InAs/[GaInSb] superlattices: a promising material system for IR detection. Handbook of Infra-red Detection Technologies: Chapter 5

    Google Scholar 

  12. Fuchs F, Rehm R, Fleißner J, Schmitz J, Pfahler Ch, Walther M, Cabanski W, Eich D, Finck M, Rode W, Wendler J, Wollrab R and Ziegler J. Focal plane arrays based on InAs/GaSb superlattices for the mid-infrared spectral range presented at MIOMD VI, St.Petersburg Sept 2003

    Google Scholar 

  13. Levine BF. Quantum-well infrared photodetectors. J. Appl. Phys. 1993; 74: R1–R81.

    Article  ADS  Google Scholar 

  14. Levine BF, Gunapala SD, and Kopf RF. Photovoltaic GaAs quantum well infrared detectors at 4.2µm using indirect AlxGa1−xAs barrier. Appl. Phys. Lett. 1991; 58:1551–1553.

    Article  ADS  Google Scholar 

  15. Pan JL, West LC, Walker SJ, Malik RJ, Walker JF. Inducing normally forbidden transitions within the conduction band of GaAs quantum well. Appl. Phys. Lett. 1990; 57:366–368.

    Article  ADS  Google Scholar 

  16. Tsai KL, Chang KH, Lee CP, Huang KF, Huang JS, Chen HR. Two-color infrared photodetector using GaAs/AlGaAs and strained InGaAs/AlGaAs multiquantum wells. Appl. Phys. Lett. 1993; 62:3504–3506.

    Article  ADS  Google Scholar 

  17. Fiore A, Rosencher E, Bois P, Nagle J, and Laurent N. Strained InGaAs/AlGaAs quantum well infrared detectors at 4.5 µm. Appl. Phys. Lett. 1994; 64:478–480.

    Article  ADS  Google Scholar 

  18. Chui HC, Lord SM, Martinet E, Fejer MM, Harris JS, Jr. Intersubband transitions in high indium content InGaAs/AlGaAs quantum wells. Appl. Phys. Lett. 1993; 63:364–366

    Article  ADS  Google Scholar 

  19. Chui HC, Martinet E, Fejer MM, Harris JS, Jr. Short wavelength intersubband transitions in InGaAs/AlGaAs quantum wells grown on GaAs. Appl. Phys. Lett. 1994; 64:736–738

    Article  ADS  Google Scholar 

  20. Tidrow MZ, Chiang JC, Li SS, Bacher K. A high strain two stack two-color quantum well infrared photodetector. Appl. Phys. Lett. 1997: 70:859–861.

    Article  ADS  Google Scholar 

  21. Choi KK, Bandara SV, Gunapala S.D, Liu W.K, Fastenau J.M. Detection Wavelength of InGaAs/AlGaAs Quantum Wells and Superlattices. J. Appl. Phys. 2002; 91:551–564.

    Article  ADS  Google Scholar 

  22. Goldberg A, Wang S, Sundaram M, Uppal P, Winn M, Milne G, Stevens M. Proceedings of the 1999 Meeting of the MSS Specialty Group on Infrared Detectors, Lexington, MA (1999), edited by J. Robinson (Infrared Information Analysis Center, Ft. Belvoir, VA 2000), p.87.

    Google Scholar 

  23. Hasnain G, Levine BF, Silvo DL, and Cho AY. Mid-infrared detectors in the 3–5 µm band using bound to continuum state absorption in InGaAs/InAlAs multiquantum well structures. Appl. Phys. Lett. 1990; 56:770–772.

    Article  ADS  Google Scholar 

  24. Maimon S, Cohen GM, Finkman E, Bashir G, Ritter D, Schacham SE. Strain Compensated InGaAs/InGaP Quantum Well Infrared Photodetector for Midwavelength Band Detection. Appl. Phys. Lett. 1999; 73: 800–802.

    Article  ADS  Google Scholar 

  25. Sengupta DK, Jackson SL, Ahmari D, Kuo HC, Malin JI, Thomas S, Feng M, Stillman GE, Chang YC, Li L, Liu HC. P-type InGaAs/InP quantum well infrared photodetector with peak response at 4.55 µm. Appl. Phys. Lett. 1996; 69:3209–3211.

    Article  ADS  Google Scholar 

  26. Liu HC, Oogarah T, Dupont E, Wasilewski ZR, Byloos M, Buchanan M, Szmulowicz F, Ehret J, Brown GJ. P-type Quantum Well Infrared Photodetectors Covering Wide Spectrum”, Elect. Lett. 2002; 38: 909–911.

    Article  Google Scholar 

  27. Pan J. L., and Fonstad C. G. Comparison of Hole and Electron Intersubband Absorption Strengths for Quantum Well Infrared Photodetectors. IEEE Trans on Electron Devices. 2000; 47:1325–1329.

    Article  ADS  Google Scholar 

  28. Levine BF. Zussman A, Gunapala SD, Asom MT, Kuo JM and Hobson WS. Photoexcited Escape Probability, Optical Gain, and Noise in Quantum Well Infrared Photodetectors. J. Appl. Phys. 1992; 72: 4429–4443.

    Article  ADS  Google Scholar 

  29. Schneider H, Fuchs F, Dischler B, Ralston JD, and Koidl P. Intersubband absorption and infrared photodetection at 3.5 and 4.2 µm in GaAs quantum wells. Appl. Phys. Lett. 1991; 58:2234–2236.

    Article  ADS  Google Scholar 

  30. Liu HC, Wilson PH, Lamm M, Steele AG, Wasilewski ZR, Li JM, Buchanan M, and Simmons JG. Low Dark Current Dual Band Infrared Photodetector Using Thin AlAs Barriers and Γ-X Mixed Intersubband Transition in GaAs Quantum Wells. Appl. Phys. Lett. 1994; 64:475–477.

    Article  ADS  Google Scholar 

  31. Schneider H, Koidl P, Fuchs F, Dischier B, Schwarz K, and Ralston JD. Photovoltaic intersubband detectors for 3–5 µm using GaAs quantum wells sandwiched between AlAs tunnel barriers. Semicond. Sci. Technol. 1991; 6:C120–C123.

    Article  Google Scholar 

  32. Ralston JD, Schneider H, Gallagher DFG, Kheng K, Fuchs F, Bittner P, Dischler B, and Koidl P. Novel molecular-beam epitaxially grown GaAs/AlGaAs quantum wells structures for infrared detection and integrated optics at 3–5 and 8–12 µm. J. Vac. Sci. Technol. B 1992; 10:998–1001.

    Article  Google Scholar 

  33. Kiledjian MS, Schulman JN, and Wang KL. Absorption in GaAs/Ga1xAlxAs quantum wells with resonant barriers for improved responsivity. Phys. Rev. B 1991; 44:5616–5621.

    Article  ADS  Google Scholar 

  34. Neu G, Chen Y, Deparis C, and Massies J. Improvement of the carrier confinement by double-barrier GaAs/AlAs/(Al,Ga)As quantum well structures. Appl. Phys. Lett. 1991; 58:2111–2113.

    Article  ADS  Google Scholar 

  35. Wang YH, Chiang JC, Li SS, and Ho P. A GaAs/AlAs/AlGaAs and GaAs/AlGaAs stacked quantum well infrared photodetector for 3–5 and 8–14 µm detection. J. Appl. Phys. 1994; 76:2538–2540.

    Article  ADS  Google Scholar 

  36. Tsai KL, Lee CP, Chen PC, Tsang JS, Tsai CM, and Fan JC. The effect of barrier structure on the performance of double barrier quantum well infra-red photodetectors. Solid-State Electron. 1996; 39:201–204.

    Article  ADS  Google Scholar 

  37. Wu WG, Jiang DS, Cui LQ, Song CY, and Zhuang Y. Structural and photoelectric studies on double barrier quantum well infrared detectors. Solid-State Electron. 1999; 43:723–727.

    Article  ADS  Google Scholar 

  38. Sung B, Chui HC, Fejer MM, and Harris JS., Jr. Near-infrared wavelength intersubband transitions in high indium content InGaAs/AlAs quantum wells grown on GaAs. Electron. Lett. 1997; 33:818–820.

    Article  Google Scholar 

  39. Lenchyshyn LC, Liu HC, Buchanan M, and Wasilewski ZR. Mid-wavelength infrared detection with InxGa1−xAs/Al0.45Ga0.55As multiple quantum well structures. Semicond. Sci. Technol. 1995; 10:45–48.

    Article  ADS  Google Scholar 

  40. Liu HC, Buchanan M and Wasilewski ZR. Short wavelength (1–4 µm) infrared detectors using intersubband transitions in GaAs-based quantum wells. J. Appl. Phys. 1998; 83:6178–6181; erratum 2002; 91:10230.

    Article  ADS  Google Scholar 

  41. Asano T, Noda S, Abe T, and Sasaki A. Jpn J.Appl. Phys. 1996; 35: 1285–1291 Near-infrared Intersubband transitions in InGaAs/AlAs Quantum Wells

    Article  ADS  Google Scholar 

  42. Chin VWL, Egan RJ, Osotchan T, Vaughan MR, and Anderson SC. Noncontact thickness and composition assessment of a strained AlGaAs/AlAs/InGaAs double barrier multiple quantum well structure. J. Appl. Phys. 1996; 80:2521–2523.

    Article  ADS  Google Scholar 

  43. Jancu JM, Pellegrini V, Colombelli R, Beltram F, Mueller B, Sorba L, and Franciosi A. Quantum tailoring of optical transitions in InxGa1−xAs/AlAs strained quantum well. Appl. Phys. Lett. 1998; 73:2621–2623.

    Article  ADS  Google Scholar 

  44. Garcia CP, Nardis AD, Pellegrini V, Jancu JM, Beltram F, Müeller BH, Sorba L, and Franciosi A. 1.26 µm intersubband transitions in In0.3Ga0.7As/AlAs quantum wells. Appl. Phys. Lett. 2000; 77:3767–3769.

    Article  ADS  Google Scholar 

  45. Smet JH, Peng LH, Hirayama Y and Fonstad CG. Electron Intersubband Transitions to 0.8 eV (1.55 µm) in InGaAs/AlAs Single Quantum Wells. Appl. Phys. Lett. 1994; 64:986–987.

    Article  ADS  Google Scholar 

  46. Gupta R, Lai KT, Missous M, and Haywood, SK. Subband Non-parabolicity estimated from intersubband absorption in highly multiple quantum wells. Phys Rev B 2003; 69: 033303 (1)–033303 (4)

    ADS  Google Scholar 

  47. Missous M, Mitchell C, Sly J, Lai KT, Gupta R. and Haywood SK. Highly strained InxGa1-xAs-InyA11-yAs (x>0.8,y<0.3) layers for short wavelength QWIP and QCL structures grown by MBE, Physica E 2004; 20: 496–502

    Article  ADS  Google Scholar 

  48. Lai KT, Gupta R, Missous M, and Haywood SK. Intersubband Absorption from 2–7 µm in Strain-compensated Double-barrier InxGa1−xAs Multiquantum Wells. Semicon. Sci. Tech. 2004; 19:1263–1267.

    Article  ADS  Google Scholar 

  49. Georgiev N, Dekorsky T, Eichorn F, Helm M, Semtsiv MP & Masselink WT. Short wavelength intersubband absorption in strain compensated InGaAs/AlAs quantum well structures grown on InP. Appl.Phys.Lett. 2003; 87:210–213

    Article  ADS  Google Scholar 

  50. Missous M. Stoichiometric low-temperature GaAs and AlGaAs: a reflection high-energy electron-diffraction study. J. Appl Phys. 1995; 78: 4467–4471

    Article  ADS  Google Scholar 

  51. Missous M. Stoichiometric low temperature (SLT) GaAs and AlGaAs grown by molecular beam epitaxy. Microelectronics J. 1996; 27: 393–409

    Article  Google Scholar 

  52. Choi KK, Lee CY, Tidrow MZ, Chang WH, Gunapala SD. Performance assessment of quantum-well infrared photodetectors. Appl.Phys.Lett 1994; 65: 1703–1705

    Article  ADS  Google Scholar 

  53. Haywood SK, Lai KT, Gupta R, Missous M. High Temperature Mid-IR Photodetectors for Gas Sensing Applications. Invited paper at MIOMD VI, St.Petersburg, Sept 2003

    Google Scholar 

  54. Pan JP, West LC, Walker SJ, Malik RJ and Walker JF. Inducing Normally Forbidden Transitions within the Conduction Band of GaAs Quantum Well. Appl. Phys. Lett. 1990; 57:366–368.

    Article  ADS  Google Scholar 

  55. Kheng K, Ramsteiner M, Schneider H, Ralston JD, Fuchs F and Koidl P. Two-color GaAs/(AlGa)As Quantum Well Infrared Detector with Voltage-tunable Spectral Sensitivity at 3–5 and 8–12µm. Appl. Phys.Lett. 1992; 661: 666–668.

    Article  ADS  Google Scholar 

  56. Yuh PF and Wang KL. Optical Transitions in a Step Quantum Well. J. Appl. Phys. 1989; 65:4377–4381.

    Article  ADS  Google Scholar 

  57. Mii YJ, Wang KL, Karunasiri RPG and Yuh PF. Observation of Large Oscillator Strengths for Both 1–2 and 1–3 Intersubband Transitions of Step Quantum Well. Appl. Phys. Lett. 1990; 56: 1046–1048.

    Article  ADS  Google Scholar 

  58. Li HS, Chen YW, Wang KL and Lie DYC. Intersubband Transitions in Pseudomorphic InGaAs/GaAs/AlGaAs Multiple Step Quantum Wells. J.Vac.Sci.Tech. B. 1993; 11: 1840–1843.

    Article  Google Scholar 

  59. Lai KT, Haywood SK, Gupta R, and Missous M. Enhanced Intersubband Absorption in Stepped Double Barrier Quantum Wells. Elect. Lett. 2002; 38:529–530.

    Article  Google Scholar 

  60. Lai KT, Haywood SK, Gupta R, and Missous M, Observation of Intersubband Absorption in the Forbidden Polarisation for a Stepped Double Barrier Quantum Well. IEE Proc.-Opto. 2003; 150: 377–380.

    Article  Google Scholar 

  61. Parihar SR, Lyon SA, Santos M and Shayegan M. Voltage Tunable Quantum Well Infrared Detector. Appl. Phys. Lett. 1989; vol. 55: 2417–2419.

    Article  ADS  Google Scholar 

  62. Mii YJ, Karunasiri RPG, Wang KL, Chen M and Yuh PF. Large Shark Shifts of the Local to Global State Intersubband Transitions in Step Quantum Well. Appl. Phys. Lett. 1990; 56: 1986–1988.

    Article  ADS  Google Scholar 

  63. Karunasiri RPG, Mii YJ and Wang KL. Tunable Infrared Modulator and Swtich using Stark Shift in Step Quantum Wells. IEEE Elect. Device Lett. 1990; 11: 277–279.

    Google Scholar 

  64. Martinet E, Luc F, Rosencher E, Bois Ph and Delaitre S. Electrical Tunability of Infrared Detectors using Compositionally Asymmetric GaAs/AlGaAs Multiquantum Wells. Appl. Phys. Lett. 1992; 60: 895–897.

    Article  ADS  Google Scholar 

  65. Chen WQ and Andersson TG. Intersubband Transitions for Differently Shaped Quantum Wells Under an Applied Electric Field. Appl. Phys. Lett. 1992; 60: 1591–1593.

    Article  ADS  Google Scholar 

  66. Larkins EC, Schneider H, Ehret S, Fleißner J, Dischler B, Koidl P and Ralston JD. Influences of MBE growth processes on photovoltaic 3–5 _m intersubband photodetectors. IEEE Trans. Electron. Devices. 1994; 41: 511

    Article  ADS  Google Scholar 

  67. Luna E, Guzman A, Sanchez-Rochas JL, Calleja E and Munoz E. Infrared Physics and Technology 2003; 44: 383–390. Modulation Doping in 3–5µm GasAs/AlAs/AlGaAs Double Barrier quantum well infrared photodetectors: an alternative to achieve high PV performance and high temperature detection

    Article  ADS  Google Scholar 

  68. Luna E, Guzman A, Trampert A, Sanchez-Rojas JL, Calleja E. On the growth conditions of 3–5 µm well-doped AlGaAs/AlAs/GaAs infrared detectors and its relation to the photovoltaic effect studied by transmission electron microscopy. Infrared Physics & Technology. 2003; 44: 391–398

    Article  ADS  Google Scholar 

  69. Ehret S, Schneider H, Fleissner J, Koidl P. Untrasfast intersubband photocurrent response in quantum well infrared photodetectors. Appl. Phys.Lett. 71 (1997) 641–643.

    Article  ADS  Google Scholar 

  70. Liu HC, Li J, Brown ER, McIntosh KA, Nichols KB, Manfra MJ. Quantum well intersubband heterodyne infrared detection up to 82GHz. Appl. Phys. Lett. 1995; 67: 1594–1596.

    Article  ADS  Google Scholar 

  71. Blaser S., Hofstetter D, Becker M, and Faist J. Free-space optical data link using Peltier-cooled quantum cascade laser. Elect. Lett. 2001; 37:778–780.

    Article  Google Scholar 

  72. Asano T, Tamura M, Yoshizawa S, and Noda S. Pump-probe measurement of ultrafast all-optical modulation based on intersubband transition in n-doped quantum wells. Appl. Phys. Lett. 2000; 77:19–21. InGaAs/AlAs

    Article  ADS  Google Scholar 

  73. Hofstetter D, Beck M, Faist J. Quantum-cascade-laser structures as photodetectors Appl.Phys.Lett 2002; 81: 2683–2685

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Haywood, S., Lai, K.T., Missous, M. (2006). QWIP Detectors for the MWIR. In: Krier, A. (eds) Mid-infrared Semiconductor Optoelectronics. Springer Series in Optical Sciences, vol 118. Springer, London . https://doi.org/10.1007/1-84628-209-8_13

Download citation

Publish with us

Policies and ethics