Skip to main content

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 118))

6 Summary

We have demonstrated that InAs-based narrow gap heterostructures exhibit a potential barrier at the p-n junction up to 300°C and are able to operate in positive and negative luminescence modes in the 3–5 µm spectral range: the latter being preferable for elevated temperatures in terms of the output power. The optimization of mid-IR diode construction by implementing rare earth gettering, and the use of a broad mirror anode contact and graded bandgap or heavily doped “windows” has lead to “universal” flip-chip devices that are able to operate as efficient LEDs with Fabry-Perot resonant features with an output as high as ∼0.5 mW/A and as photodiodes with a detectivity as high as 2×1010 cm Hz1/2W−1. Optical pumping using a GaAs LED appears to be an efficient way of realizing an InAsSb emitter with a conversion efficiency ∼10 µW/A in the 8 µm spectral region. The coupling of the flip-chip devices with immersion lenses or fibres through the use of high index chalcogenide glass together with an appropriate choice of the bias direction at the p-n junction can yield an additional performance enhancement of a factor of 3–5. Optically coupled LED-PD pairs can be used as precise low voltage or current sensors of gases and liquids, e.g. with an expected limit of detection for methane gas as small as LOD Δf=1 MHz =18 ppm·cm·mA·s1/2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Vujkovic-Cvijin, D.E. Cooper, J.E. van der Laan and R.E. Warren “Diode Laser Based Lidars: Next Generation” Proc.SPIE 1999,. 3758, 142 P. Vujkovic-Cvijin et al. “Mobile remote sensor for leak detection in natural gas pipelines”, Report on the Contract work #5097-260-3941 with the Gas Technology Institute, Des Plaines, IL, USA

    Google Scholar 

  2. Smith, S.D., Crowder, J.G. and Hardaway, H.R., “Recent developments in the application of mid-infrared lasers, LEDs and other solid state sources to gas detection”, Proc.SPIE 2002, 4651, 157–172

    Article  ADS  Google Scholar 

  3. N.M. Kolchanova, A.A. Popov, A.B. Bogoslavskaya, U.S. Sukach, Tech.Phys.Lett., 1993, 19 64 (in russian)

    Google Scholar 

  4. G.A. Sukach, A.B. Bogoslavskaya, P.F. Oleksenko, Yu.Yu. Bilinets, “Effect of Auger recombination on thermal processes in InGaAs and InAsSbP IR-emitting diodes”, Infrared Physics & Technology 2000, 41, 299–306

    Article  ADS  Google Scholar 

  5. M. Aidaraliev, N. V. Zotova, S. A. Karandashev et al. “Light Emitting Diodes for the Spectral Range of λ =3.3–4.3 µm Fabricated from the InGaAs-and InAsSbP-Based Solid Solutions: Electroluminescence in the Temperature Range of 20–180°C”, Semiconductors, 2000, 34, 102–105

    ADS  Google Scholar 

  6. L.G. Bubulak, A.M. Andrews, E.R. Gertner and D.T. Longo, “Backside-illuminated InAsSb/GaSb broadband detectors”, Appl.Phys.Lett., 1980, 36, 734–736

    Article  ADS  Google Scholar 

  7. D.T. Cheung, A.M. Anfrews, E.R. Gertner et al. “Backside-illuminated InAs1–xSbx-InAs narrow-band photodetectors”, Appl.Phys.Lett., 1977, 30, 587–589

    Article  ADS  Google Scholar 

  8. P.K. Chiang and S.M. Bedair, “p-n junction formation in InSb and InAs1−xSbx by metalorganic chemical vapor deposition”, Appl.Phys.Lett. 1985, 46,. 383–385

    Article  ADS  Google Scholar 

  9. J.K. Abrokwah, M. Gershenson “Liquid phase growth and characterization of InAs1–xSbx and In1–xGaxSb on (111)B InSb substrates, Journal of Electronic materials 1981, 10, 379–420

    Article  ADS  Google Scholar 

  10. B.A. Matveev, N.M. Stus’, G.N. Talalakin et al. “Microhardness of InGaAs, InGaAsSb, InAsSbP semiconductor alloys enriched with InAs” Izv.Akad.Nauk SSSR, Neorg.Mater, 1990, 26, 639

    Google Scholar 

  11. B.A. Matveev, N.M. Stus’, and G.N. Talalakin, “Inverse defect formation during growth of epitaxial InAsSbP/InAs structures”, Sov.Phys.Crystallogr., 1988, 33, 124–127

    Google Scholar 

  12. N.P. Esina, N.V. Zotova, B.A. Matveev et al. “Long wavelength uncooled light emitting diodes from InAs1–x–ySbxPy solid solutions”, Sov.Tech.Phys.Lett., 1983, 9, 167–168

    Google Scholar 

  13. N.V. Zotova, A.V. Losev, B.A. Matveev et al., “Absorption edge of variable-gap InAs1–xSbx (x < 0.54) epitaxial layers”, Sov.Tech.Phy.Lett., 1990, 16, 155–157

    Google Scholar 

  14. B.A. Matveev, N.V. Zotova, S.A. Karandashev, M.A. Remenniy, N.M. Stus’, G.N. Talalakin, “III–V optically pumped mid-IR LEDs”. Proc. SPIE, 2001, 4278, 189–196

    Article  ADS  Google Scholar 

  15. B.V. Morozov, Yu.B. Bolkhovityanov, R.S. Gabaraev et al., Sov.Phys.Semicond, 1980, 14, 883

    Google Scholar 

  16. M. Fisher, A. Krier, “Photoluminescence of epitaxial InAs produced by different growth methods”, Infrared Physics & Technolog, 1997, 38, 405–413

    Article  ADS  Google Scholar 

  17. G.R. Nash, N.T. Gordon, M.T. Emeny, T. Ashley, “Perspectives on dynamic infrared scene projection using positive and negative luminescence” Proc. SPIE, 2003, 5092, 138–144

    Article  ADS  Google Scholar 

  18. B. A. Matveev, N. V. Zotova, N.D. Il’inskaya et al. “Towards efficient mid-IR LED operation: optical pumping, extraction or injection of carriers?”, J.Mod.Optics, 2002, 49,. 743–756

    Article  ADS  Google Scholar 

  19. Matveev, B.A.; Zotova N.V., Karandashev S.A. et al. “Backside illuminated In(Ga)As/InAsSbP DH photodiodes for methane sensing at 3.3 µm”, Proc. SPIE 2002, 4650, 173–178

    Article  ADS  Google Scholar 

  20. Z.M. Fang, K.Y. Ma, D.H. Jaw et al. “Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy”, J.Appl.Phys. 1990, 67, 7034–7039

    Article  ADS  Google Scholar 

  21. X.Y. Gong, T. Yamaguchi, H. Kan et al. “Mid-Infrared Photoluminescence from Liquid Phase Epitaxial InAsSb/InAs Multilyers”, Jpn.J.Appl.Phys, 1997, 36, 738–742

    Article  ADS  Google Scholar 

  22. Esina N.P., Zotova N.V. “Mechanisms of recombination of excess carriers in InAs and related solid solusions” Sov.Phys.Sem., 1980, 14 (Fizika & Technika Poluprovodnikov, v.14, No 3, pp. 316–322, in Russian).

    Google Scholar 

  23. A. Krier, “Physics and technology of mid-infrared light emitting diodes”, Phil. Trans. R. Soc. Lond. A 2001, 359, 599–619

    Article  ADS  Google Scholar 

  24. N.V. Zotova, S.A. Karandashov, B.A. Matveev et al. “Gadolinium-doped InGaAsSb solid solusions on an InAs substrate for light-emitting diodes operating in the spectral interval λ=3–5 µm”, Semiconductors, 1999,. 33, 920–923

    Article  ADS  Google Scholar 

  25. A. Rogalski “Heterostructure infrared photovoltaic detectors” Infrared Physics and Technology 2000, 41, 213–238

    Article  ADS  Google Scholar 

  26. A.A. Bergh & P.J. Dean, “Light-emitting diodes”, Claredon Press, Oxford, 1976, (Russian translation:, “Mir”, Moscow 1979).

    Google Scholar 

  27. Http://www.ioffe.rssi.ru/SVA/NSM/Nano/index.html.

    Google Scholar 

  28. J.G. Crowder, T. Ashley, C.T. Eliott et al. “Minimally cooled InSb/InAlSb LED and photodiode devices applied to nitrogen dioxide detection at ppm levels”, Electronics Lett., 2000, 36, 1867–1869

    Article  Google Scholar 

  29. M.J. Kane, G. Braithwaite, M.T. Ereny et al. “Bulk and surface recombination in InAs/AlAs0.16 Sb0.84 3.45 µm light emitting diodes”, Appl.Phys.Lett., 2000, 76, 943–945

    Article  ADS  Google Scholar 

  30. A. Krier, D. Chubb, S.E. Krier et al. “Light sources for wavelengths >2 µm grown by MBE on InP using a strain relaxed buffer, IEE Proceedings, Optoelectronics 1998, 145, 292–296

    Article  Google Scholar 

  31. M Aidaraliev, N V Zotova, N D Il’inskaya et al. “InAs and InAsSb LEDs with built-in cavities” Semicond. Sci. Technol. 2003, 18, 269–272

    Article  ADS  Google Scholar 

  32. Zh.I. Alferov, A.T. Gorelenok, V.G. Gruzdov et al. “InGaAsP/InP DH LEDs (λ=1.55 µm) with external efficiency ηe≈30%(300 K)” Phys.Tech.Lett 1982, 8, (Pis’ma v zhurnal technicheskoy fiziki, 1992, 8, 257–262, in Russian)

    Google Scholar 

  33. V. K. Malyutenko, O.Yu. Malyutenko, A. D. Podoltsev et al., “Current crowding in InAsSb LED structures”, Applied Physics Letters, 2001, 79, 4228–4230

    Article  ADS  Google Scholar 

  34. D.A. Wright, V.V. Sherstnev, A. Krier et al. “Mid-infrared whispering gallery mode ring lasers and LEDs” IEE Proc.-Optoelectronics 2003, 150, 314–317

    Article  Google Scholar 

  35. M.A. Remennyi, B.A. Matveev, N.V. Zotova et al. “InGaAsSb negative luminescent devices with built-in cavities emitting at 3.9 µm”, Physica E: Low-dimensional Systems and Nanostructures, 2004, 20, 548–552

    Article  ADS  Google Scholar 

  36. D. Gevaux, A. Green, C. Palmer et al., “Resonant-cavity light emitting diodes (RC-LEDs) and detectors for mid-IR gas-sensing applications”, IEE Proc. Optoelectron., 2003, 150, 360–364

    Article  Google Scholar 

  37. N.V. Zotova, N.D. Il’inskaya, S.A. Karandashev et al. “InAs light-emitting diodes with cavity formed by anode contact and semiconductor/air interface” Semiconductors 2004, 38, 1–4

    Article  Google Scholar 

  38. B. A. Matveev, M. Aidaraliev, N. V. Zotova et al., In(Ga)As-and InAs(Sb)-Based Heterostructure LEDs and Detectors for the 3,-5 µm Spectral Range”, Book of MIOMD-V Abstracts 2002, 97–98

    Google Scholar 

  39. B. Matveev., N. Zotova, N. Il’inskaya et al., “Spontaneous and stimulated emission in InAs LEDs with cavity formed by gold anode and semiconductor/Air interface”, phys. stat. sol. (c) 2005, 2, 927–930

    Article  Google Scholar 

  40. M. AÏdaraliev, N. V. Zotova, S. A. Karandashev, et al., “Light Emitting Diodes for the Spectral Range λ = 3.3–4.3 µm Fabricated from InGaAs and InAsSbP Solid Solutions: Electroluminescence in the Temperature Range 20–180°C (Part 2)” Semiconductors, 2001, 35, 598–604.

    Article  ADS  Google Scholar 

  41. V. I. Ivanov-Omskii, B. T. Kolomiets, and V. A. Smirnov, “Radiative recombination in InSb at magneto-concentration effect”, 1965 161 Dokl. Ak. Nauk SSSR 1956, 161, [Sov. Phys. Dokl. 10, 345 (1965)].

    Google Scholar 

  42. J. R. Lindle, W. W. Bewley, I. Vurgaftman et al. “Negative luminescence from mid-wave infrared HgCdTe diode arrays” Physica E: Low-dimensional Systems and Nanostructures 2004, 20, 558–562

    Article  ADS  Google Scholar 

  43. B. A. Matveev, N. V. Zotova, S. A. Karandashev et al., “Towards longwave (5÷ 6 µm) LED operation at 80°C: injection or extraction of carriers?”, IEE Proceedings-Optoelectronics 2002, 149, 33–35

    Article  Google Scholar 

  44. G.R. Nash, N.T. Gordon, D.J. Hall et al., “Infrared negative luminescent devices and higher operating temperature detectors”, Physica E: Low-dimensional Systems and Nanostructures 2004, 20, 540–547

    Article  ADS  Google Scholar 

  45. B.A. Matveev, M. A’daraliev, N.V. Zotova, et al. “Negative luminescence from InAsSbP-based diodes in the 4.0–4.3 µm range”, Proc SPIE 2001, 4285, 109–117

    Article  ADS  Google Scholar 

  46. B.I. Stepanov, “Basics for spectroscopy utilizing negative light beams”, Minsk, 1961

    Google Scholar 

  47. A.M. White, “Generation-recombination processes and Auger suppression in small-bandgap detectors”, Journal of Crystal Growth 1988, 86, 840–848

    Article  ADS  Google Scholar 

  48. L.J. Olafsen, I. Vurgaftman, W.W. Bewley et al. “Negative luminescence from Type-II InAs/GaSb superlattice photodiodes”, Appl.Phys.Lett. 1999, 74, 2681–2683

    Article  ADS  Google Scholar 

  49. W. W. Bewley, M. J. Jurkovic, C. L. Felix et al.,“HgCdTe Photodetectors with Negative Luminescent Efficiencies > 80%”, Appl.Phys.Lett., 2001, 78, 3082–3084.

    Article  ADS  Google Scholar 

  50. M A Remennyi, N V Zotova, S A Karandashev et al. “Low voltage episide down bonded mid-IR diode optopairs for gas sensing in the 3.3–4.3 µm spectral range” Sensors & Actuators B: Chemical, 2003, 91, 256–261

    Article  Google Scholar 

  51. A.M. White, “Generation-recombination processes and Auger suppression in small-bandgap detectors”, Journal of Crystal Growth 1988, 86, 840–848

    Article  ADS  Google Scholar 

  52. N.P. Esina, N.V. Zotova, D.N. Nasledov, “Electroluninescence in InAs p-n junctions”, Fiz. Tech. Polupr., 1969, 3, 1370–1373 (in Russian).

    Google Scholar 

  53. A. Krier and Y. Mao, “High performance InAsSbP/InGaAs photodiodes for the 1.8–3.4 µm wavelength range”, Infrared Physics & Technology, 1997, 38, 397–403

    Article  ADS  Google Scholar 

  54. J.L. Malin, C.L. Felix, J.R. Meyer et al., “Type II mid-IR lasers operating above room temperature”, Electron. Lett., 1996, 32, 1593–1594

    Article  Google Scholar 

  55. M. Boroditsky, T.F. Krauss, R. Cocciol et al., “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals”, Appl.Phys.Lett., 1999, 75, 1036–1038.

    Article  ADS  Google Scholar 

  56. Adrian John Maldan, Patent of GB No 2102942, G01N26/31, 21/35, published 09.02.83.

    Google Scholar 

  57. B.A. Matveev, N.V. Zotova, N.D. Il’inskaya et al., “Radiation Source”, GB patent #2363906 filed 21 April, 2000.

    Google Scholar 

  58. M. Aidaraliev, N. V. Zotova, S. A. Karandashev et al., “Optically Pumped “Immersion-Lens” Infrared Light Emitting Diodes Based on Narrow-Gap III–V Semiconductors”, Semiconductors, 2002, 36, 828–831

    Article  ADS  Google Scholar 

  59. N.V. Zotova, S.A. Karandashev, B.A. Matveev, M.A. Remennyi, N.M. Stus’, and N.G. Tarakanova. “Luminescence of Multilayer Structures Based on InAsSb at λ= 6–9 µm”. Semiconductors 2005, 39, 214–217

    Article  ADS  Google Scholar 

  60. V.N. Brudnyi, N.G. Kolin_, A.I. Potapov V.D. Kuznetsov “Electrophysical properties of proton-irradiated InAs” Semiconductors 2003, 37, 390–395

    Article  ADS  Google Scholar 

  61. C. Sirtori, F. Capasso, J. Faist et al., “Quantum cascade unipolar intersubband light emitting diodes in the 8—13 µm wavelength region” Appl.Phys.Lett. 1998, 74, 2384–2386

    Google Scholar 

  62. A. Green, D. Gevaux, C. Roberts, and C. Philips, “Resonant-cavity-enhanced photodetectors and LEDs in the mid-infrared”, Physica E: Low-dimensional Systems and Nanostructures, 2004, 20, 531–535

    Article  ADS  Google Scholar 

  63. R. Windish et al., “40% efficient thin-film surface textured light-emitting diodes by optimization of natural lithography” IEEE. T.Electron.Dev. 2000, 47, 1492–1498

    Article  ADS  Google Scholar 

  64. Ashley T., Dutton D.T., Elliott C.T. et al., “Optical Concentrators for Light Emitting Diodes”, Proc. SPIE 1998, 3289, 43

    Article  ADS  Google Scholar 

  65. R.C. Johnes. “Immersed radiation detectors”, Appl.Opt., 1962, 1, 607–613

    Article  ADS  Google Scholar 

  66. A.G. Fischer and C.J. Nuese, “Highly Refractive Glasses to Improve Electroluminescent Diode Efficiencies”. J.Electrochem.Soc. SOLID STATE SCIENCE 1969, 116, 1718–1722

    Google Scholar 

  67. Jaw W. Chey, Peter Sultan, Hendrik J. Gerritsen, “Resonant photoacoustic detection of methane in nitrogen using a room temperature infrared light emitting diode” Appl.Optics, 1987, 26, 3192–3194

    Article  ADS  Google Scholar 

  68. Esina N.P, Zotova N.V., Markov I.I. et al. “Gas analyzer based on semiconductor components”, J.Appl.Spectrosc., 1985, 42, 465–467

    Article  ADS  Google Scholar 

  69. V.K. Malyutenko, 0.Yu. Malyutenko, A. Dazzi et al., “Heat transfer mapping in 3–5 µm planar light emitting structures”, J. Appl. Phys. 2003, 93, 9398–9400.

    Article  ADS  Google Scholar 

  70. B.A. Matveev, M. Aydaraliev, N.V. Zotova et al., «Flip-chip bonded InAsSbP and InGaAs LEDs and detectors for the 3 µm Spectral Region” IEE Proc.-Optoelectronics 2003, 150, 356–359

    Article  Google Scholar 

  71. S. McCabe and B.D. MacCraith, “Novel mid-infrared LED as a source for optical fibre gas sensing”, Electron. Lett., 1993, 29, 1719–1721

    Article  ADS  Google Scholar 

  72. Messica, A., Greenstein, A., and Katzir, A., “Theory of Fiber-Optic, Evanescent-Wave Spectroscopy and Sensors,” Appl.Opt., 1996, 35, 2274–2284

    Article  ADS  Google Scholar 

  73. B. Mizaikoff, “Mid-Infrared Fiberoptic Evanescent Wave Sensors — A Novel Approach for Subsea Monitoring”, Meas. Sci. Technol., 1999, 10, 1185–1194

    Article  ADS  Google Scholar 

  74. Rick K. Nubling and James A. Harrington, “Optical properties of single-crystal sapphire fibers”, Appl.Opt., 1997, 36, 5934–5940

    Article  ADS  Google Scholar 

  75. B. A. Matveev, N.V. Zotova, S. A. Karandashev et al. “3.4 µm “Flip-chip” LEDs for Fiber Optic Liquid Sensing” Proceedings of the 1-st International Conference on Advanced Optoelectronics and Lasers (CAOL’2003), 2003 Alushta, Crimea, Ukraine v.2, 138–140

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Matveev, B.A. (2006). LED-Photodiode Opto-pairs. In: Krier, A. (eds) Mid-infrared Semiconductor Optoelectronics. Springer Series in Optical Sciences, vol 118. Springer, London . https://doi.org/10.1007/1-84628-209-8_12

Download citation

Publish with us

Policies and ethics