Skip to main content

Fuels and Fuel Processing

  • Chapter
Book cover Fuel Cell Technology

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

H2 is an ideal fuel for fuel cells (FCs) because of its high reactivity and zeroemission characteristics. Unfortunately, H2 is not easily available, and neither its production nor distribution infrastructure are widely spread. Therefore, development of technologies for production of H2 onboard and onsite from other sources such as natural gas, methanol, and gasoline is necessary. In the next section, different feedstocks that are suitable for H2 production for fuel cell application are presented. Subsequent sections focus on reforming of hydrocarbons that are processed by a series of steps that include fuel desulfurization, reforming, water-gas shift reaction and carbon monoxide (CO) removal [1,2,3,4]. Figure 5.1 illustrates what is known as the fuel processing train with some options for the essential steps. This general fuel processing train is usually used for PEM fuel cells running on fossil fuels such as natural gas. The processing steps that the feedstock are subjected to depend on the type of the fuel and the fuel cell. For example, if methanol is the fuel for PAFC, the CO removal step might not be necessary. The last two steps, water-gas shift reaction and CO removal, are not necessary in the case of MCFC. If feedstocks heavier than methane are used as a feed to the SOFC, an additional process step known as prereforming might be used. Such variations are described in more detail in Section 5.3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5.5 References

  1. Brown L F. Int. J. Hydrogen Energy 26 (2001) 381.

    Google Scholar 

  2. Joensen F, Rostrup-Nielsen J R,. J. Power Sources 1 (2001) 4566.

    Google Scholar 

  3. Moon D J, Sreekumar K, Lee S D, Lee B G, H.S. Kim, Appl. Catal. A 1 (2001) 215.

    Google Scholar 

  4. Yanhui W, Diyong W. Int.J. Hydrogen Energy 26 (2001) 795.

    Google Scholar 

  5. Audus H, Kaarstad O, Kowal M. Decarbonisation of Fossil Fuels: Hydrogen as an Energy Carrier, CO2 Conference, Boston/Cambridge 1997, published in Energy Conversion Management, Vol. 38,Suppl., pp. 431–436.

    Google Scholar 

  6. Scholz W H. Processes for industrial production of hydrogen and associated environmental effects. Gas Sep. Purif. 1993;7:131–9.

    Google Scholar 

  7. Armor J N. The multiple roles for catalysis in the production of H2. Applied Catalysis A: General 176 (1999) 159–176.

    Google Scholar 

  8. Blomen L J M J, Mugerwa M N. Fuel Cell System. New York: Plenum Press, 1993.

    Google Scholar 

  9. Avadikyan A, Cohendet P, Heraud J A. The Economic Dynamics of Fuel Cell technologies. Springer-Verlag: Berlin, 2003, pp. 23–42.

    Google Scholar 

  10. Lee F. Brown, International Journal of Hydrogen Energy 26 (2001) 381–397.

    Google Scholar 

  11. Dicks A L, Journal of Power Sources 61 (1996) I 1.3–124.

    Google Scholar 

  12. U.S. Energy Information Administration. Available at http://www.eia.doe.gov. Accessed August 26, 2004.

    Google Scholar 

  13. Zhan Z, Liu J, Barnett S A. Operation of anode-supported solid oxide fuel cells on propane-air fuel mixtures. Applied Catalysis A: General, Volume 262, Issue 2, 20 May 2004, Pages 255–25.

    Google Scholar 

  14. European certification for IdaTech’s EtaGen. Fuel Cells Bulletin, Volume 2004, Issue 3, March 2004, Page 8.

    Google Scholar 

  15. Loffler D G, Taylor K, Mason D. A light hydrocarbon fuel processor producing high-purity hydrogen. Journal of Power Sources 117 (2003) 84–91.

    Google Scholar 

  16. Chen F, Zha S, Dong J, Liu M. Pre-reforming of propane for low-temperature SOFCs. Solid State Ionics, Volume 166, Issues 3–4, 30 January 2004, Pages 269–273.

    Google Scholar 

  17. Amphlett J C, Mann R F, Peppley B A, Robnerge P R, Rodrigues A, Salvador J P, J. Power Sources 1998, 71:179–184

    Google Scholar 

  18. Lindstrom B, Peterson L J, Govind Menon P. Applied Catalysis A: General 234 (2002) 111–125.

    Google Scholar 

  19. Fisher I A, Bell A T. Journal of Catalysis 184 (1999) 357–376.

    Google Scholar 

  20. Peppley B A, Amphlett J C, Thurgood C P, Mann R F. Topics in Catalysis, 223–4 (2003) 253–259.

    Google Scholar 

  21. Wasmus S, Kuver A. Methanol oxidation and direct methanol fuel cells: a selective review. Journal of Electroanalytical Chemistry 461 (1999) 14–31.

    Google Scholar 

  22. Deluga G A, Salge J R, Schmidt L D, Verykios X E. SCIENCE vol. 303 (2004) 13.

    Google Scholar 

  23. Chellappa1 A S, Fischer C M, Thom W J. Applied Catalysis A: General 227 (2002) 231–240.

    Google Scholar 

  24. Uribe F A, Gottesfeld S, Zawodzinski Jr T A. Effect of ammonia as potential fuel impurity on proton exchange membrane fuel cell performance, J. Electrochem.l Soc. 149(3) (2002) A293–A296.

    Google Scholar 

  25. Air liquide. Available at: airliquide.com. Accessed Sep 8, 2004.

    Google Scholar 

  26. US Dept. of Energy, Energy Efficiency and Renewable Energy. Available at: http://www.eere.energy.gov. Accessed August 2, 2004.

    Google Scholar 

  27. Lv P, Chang J, Wang T, Fu Y, Chen Y. Energy & Fuels 18 (2004) 228–233.

    Google Scholar 

  28. Huber G W, Shabaker J W, Dumesic J A. SCIENCE vol. 300 (2003) 27.

    Google Scholar 

  29. Larminie J, Dicks A. Fuel Cell Systems Explained. Chichester: John Wiley & Sons, 2002.

    Google Scholar 

  30. Wu S, Chen J X, Zheng X F, Zeng H S, Zheng C M, Guan N J. Novel preparation of nanocrystalline magnesia-supported caesium-promoted ruthenium catalyst with high activity for ammonia synthesis. Chemical Communications, 2003, 19, 2488–2489.

    Google Scholar 

  31. Wang R, Wei K, Lin J X, Yu X J, Mao S L. Preparation of Ru/AC ammonia synthesis catalyst reduced with hydrazine hydrate. Chinese Journal of Catalysis, 2003, 24, 929–932.

    Google Scholar 

  32. Trukhan S N, Ivanov V P, Kochubey D I, Tsyru’nikov P G, Dobrynkin N M, Noskov A S. Ammonia formation on (Ru plus Cs)/C catalysts by the interaction of adsorbed nitrogen with hydrogen that diffused from the bulk of cesium-ruthenium particles. Kinetics and Catalysis, 2003, 44, 648–651.

    Google Scholar 

  33. Pernicone N, Ferrero E, Rossetti I, Forni L, Canton P, Riello P, Fagherazzi G, Signoretto M, Pinna F. Wustite as a new precursor of industrial ammonia synthesis catalysts. Applied Catalysis A: General, 2003, 251, 121–129.

    Google Scholar 

  34. Lytken O, Waltenburg H N, Chorkendorff I. Ammonia synthesis on Au modified Fe(111) and Ag and Cu modified Fe(100) surfaces. Surface Science, 2003, 543, 207–218.

    Google Scholar 

  35. Logadottir A, Norskov J K. Ammonia synthesis over a Ru(0001) surface studied by density functional calculations. Journal of Catalysis, 2003, 220, 273–279.

    Google Scholar 

  36. Kowalczyk Z, Krukowski M, Rarog-Pilecka W, Szmigiel D, Zielinski J. Carbon-based ruthenium catalyst for ammonia synthesis-Role of the barium and caesium promoters and carbon support. Applied Catalysis A: General, 2003, 248, 67–73.

    Google Scholar 

  37. Volpi A, Clary D C. Theoretical investigation of the surface reaction N-(ads)+H-(ads)-> NH(ads) on Ru(0001) using density functional calculations, variational transitionstate theory, and semiclassical tunneling method. Journal of Physical Chemistry B, 2004, 108, 336–345.

    Google Scholar 

  38. Wang R, Wei K, Lin J X, Yu X J, Mao S L. Preparation of Ru/AC ammonia synthesis catalyst reduced with hydrazine hydrate. Chinese Journal of Catalysis, 2003, 24, 929–932.

    Google Scholar 

  39. Satterfield C N. Heterogeneous Catalysis in Practice. McGraw Hill: New York, 1980.

    Google Scholar 

  40. Chorkendorff I, Niemantsverdriet J W. Concepts in modern Catalysis and Kinetics. WILEY-VCH: Weinheim, 2003, pp. 301–348.

    Google Scholar 

  41. Ishiguro T. Make Town Gas from Naphtha. Hydrocarbon Processing, 1968, 47, 87–96.

    Google Scholar 

  42. Wilhelm D J, Simbeck D R, Karp A D, Dickenson R L. Syngas production for gas-toliquids applications: technologies, issues and outlook. Fuel Processing Technology, 2001, 71, 139–148.

    Google Scholar 

  43. Warnatz J. Hydrocarbon oxidation high-temperature chemistry. Pure and Applied Chemistry, 2000, 72, 2101–2110.

    Google Scholar 

  44. Pena M A, Gomez J P, Fierro J L G. New catalytic routes for syngas and hydrogen production. Applied Catalysis A: General, 1996, 144, 7–57.

    Google Scholar 

  45. Jenner G. Ruthenium Catalyzed Hydroformylation Reactions Using in Situ Generation of Synthesis Gas from Aqueous Methyl Formate. Applied Catalysis, 1991, 75, 289–298.

    Google Scholar 

  46. Schmidt L D, Klein E J, Leclerc C A, Krummenacher J J, West K N. Syngas in millisecond reactors: higher alkanes and fast lightoff. Chemical Engineering Science, 2003, 58, 1037–1041.

    Google Scholar 

  47. Vosloo A C. Fischer-Tropsch: a futuristic view. Fuel Processing Technology, 2001, 71, 149–155.

    Google Scholar 

  48. Young S. Tomorrow’s Energy: Hydrogen, Fuel Cells and the Prospects for a Cleaner Planet by Peter Hoffmann. Nature, 2001, 414, 487–488.

    Google Scholar 

  49. Wang Z F, Wang W P, Lu G X. Studies on the active species and on dispersion of Cu in CU/SiO2 and Cu/Zn/SiO2 for hydrogen production via methanol partial oxidation. International Journal of Hydrogen Energy, 2003, 28, 151–158.

    Google Scholar 

  50. Wang W P, Lu G X. Advances in catalytic generation of hydrogen from ethanol. Progress in Chemistry, 2003, 15, 74–78.

    Google Scholar 

  51. Segal S R, Carrado K A, Marshall C L, Anderson K B. Catalytic decomposition of alcohols, including ethanol, for in situ H2 generation in a fuel stream using a layered double hydroxide-derived catalyst. Applied Catalysis A: General, 2003, 248, 33–45.

    Google Scholar 

  52. Pfeifer P, Schubert K, Liauw M A, Emig G. Electrically heated microreactors for methanol steam reforming. Chemical Engineering Research & Design, 2003, 81, 711–720.

    Google Scholar 

  53. Larsen H, Feidenhans’l R, Petersen L S. Hydrogen system energy technologies: Hydrogen system energy technologies in global, European and Danish perspective. Risø Energy Report 3. Risø National Laboratory.

    Google Scholar 

  54. McHugh K. Hydrogen Production Method. Prepared for MPR Associates, Inc. Febuary 2005.

    Google Scholar 

  55. Xu S, Wang X L, Zhao R. Study on the production of hydrogen from methane. Progress in Chemistry, 2003, 15, 141–150.

    Google Scholar 

  56. Song C. Fuel processing for low-temperature and high-temperature fuel cells. Challenges, and opportunities for sustainable development in the 21st century. Catal. Today 2002; 77:17–49.

    Google Scholar 

  57. Thomas S, Zalbowitz M. Fuel Cells-Green Power, Los Alamos National Laboratory.

    Google Scholar 

  58. Mohtadi R, Lee W-K, Cowan S, Van Zee J W, Murthy M. Effects of Hydrogen Sulfide on the Performance of a PEMFC. Electrochemical and Solid-State Letters, 6(12) A272–A274 (2003).

    Google Scholar 

  59. Palm C, Cremer P, Peters R, Stolten D. J Power Sources 2002, 106:231–237.

    Google Scholar 

  60. Nielsen B. Appl.Catal. 11 (1984) 5.

    Google Scholar 

  61. Shafi R, Hutchings G J. Catal. Today 59 (2000) 423.

    Google Scholar 

  62. Whitehurst D D, Isoda I, Mochida I. Adv. Catal. 42 (1998) 345.

    Google Scholar 

  63. Novochinskii II, Song C, Ma X, Liu X, Shore L, Lampert J, Farrauto R J. Low-Temperature H2S Removal from Steam-Containing Gas Mixtures with ZnO for Fuel Cell Application. 1. ZnO Particles and Extrudates. Energy & Fuels (2004), 18(2), 576–583.

    Google Scholar 

  64. Fan H, Li Y, Li C, Guo H, Xie K. The apparent kinetics of H2S removal by zinc oxide in the presence of hydrogen. Fuel 2002, 81(1), 91–96.

    Google Scholar 

  65. Ahmed S, Kumar R, Krumpelt M. Fuel processing for fuel cell power systems. Fuel Cell Bull 1999;12:4–7.

    Google Scholar 

  66. Tawara K, Nishimura T, Iwanami H, Nishimoto T, Hasuike T. New Hydrodesulfurization Catalyst for petroleum-Fed Fuel Cell Vehicle and Cogenerations. Ind. Eng. Chem. Res. 2001; 40:2367–70.

    Google Scholar 

  67. Nag N K, Sapre A V, Broderick D H, Gates B C. J. Catal. 57 (1979) 509.

    Google Scholar 

  68. Kilanowski D R, Teeuwen H, Gates B C, Beer V H J D, Schuit G C A, Kwart H. J. Catal. 55 (1978) 129.

    Google Scholar 

  69. Houalla M, Nag N K, Sapre A V, Broderick D H, Gates B C. AIChE J. 24 (1978) 1015.

    Google Scholar 

  70. Houalla M, Broderick D H, Sapre A V, Nag N K, Beer V H J D. J. Catal. 61 (1980) 523.

    Google Scholar 

  71. Pecoraro T A, Chianelli R R. Hydrodesulfurization catalysis by transition metal sulfides. J. Catal. 1981, 67, 430.

    Google Scholar 

  72. Ledoux M J, Michaux O, Agostini G, Panissod P. The influence of sulfide structures on the hydrodesulfurization activity of carbon-supported catalysts. J. Catal. 1986, 102, 275.

    Google Scholar 

  73. Grange P, Vanhaeren X. Hydrotreating catalysts, an old story with new challenges. Catal. Today 1997, 36, 375.

    Google Scholar 

  74. Qian W, Yoda Y, Hirai Y, Ishihara A, Kabe T. Hydrodesulfurization of dibenzothiophene and hydrogenation of phenanthrene on alumina-supported Pt and Pd catalysts. Appl. Catal., A 1999, 184, 81.

    Google Scholar 

  75. Isoda T, Nagao S, Ma X, Korai Y, Mochida I. Hydrodesulfurization of Refractory Sulfur Species. 1. Selective Hydrodesulfurization of 4,6-Dimethyldibenzothiophene in the Major Presence of Naphthalene over CoMo/Al2O3 and Ru/Al2O3 Blend Catalysts. Energy Fuels 1996, 10, 482.

    Google Scholar 

  76. Lecrenay E, Sakanishi K, Mochida I. Catalytic hydrodesulfurization of gas oil and model sulfur compounds over commercial and laboratory-made CoMo and NiMo catalysts: Activity and reaction scheme. Catal. Today 1997, 39, 13.

    Google Scholar 

  77. Bej S K, Maity S K, Turaga U T. Search for an Efficient 4,6-DMDBT Hydrodesulfurization Catalyst: A Review of Recent Studies. Energy Fuels 2004, 18(5), 1227.

    Google Scholar 

  78. Navarro R, Pawelec B, Fierro J L G, Vasudevan P T, Cambra J F, Arias P L. Appl. Catal. A 137 (1996) 269.

    Google Scholar 

  79. Qian W, Yoda Y, Hirai Y, Ishihara A, Kabe T. Appl. Catal. A 184 (1991) 81.

    Google Scholar 

  80. Robinson W R A M, van Veen J A R, de Beer V H J, van Santen R A. Fuel Processing Technology, 61 (1991) 89.

    Google Scholar 

  81. Robinson W R A M, van Veen J A R, de Beer V H J, van Santen R A. Fuel Processing Technology, 61 (1991) 103.

    Google Scholar 

  82. Venezia A M, Parola V L, Deganello G, Cauzzi D, Leonardi G, Predieri G. Appl. Catal. 229 (2002) 261.

    Google Scholar 

  83. Papadopoulou C, Vakros J, Matralis H K, Kordulis C, Lycourghiotis A. J. Colloid Interface Sci. 261 (2003) 146.

    Google Scholar 

  84. Okamoto Y, Ochiai K, Kawano M, Kobayashi K, Kubota T. Appl. Catal. A 226 (2002) 115.

    Google Scholar 

  85. Sakanishi K, Nagamatsu T, Mochida I, Whitehurst D D. J. Mol. Catal. A 155 (2000) 101.

    Google Scholar 

  86. Haji S, Zhang Y, Kang D, Aindow M, Erkey C. Hydrodesulfurization of Model Diesel using Pt/Al2O3 Catalysts Prepared by Supercritical Deposition. Catal. Today Volume 99, s 3–4, 30 (2005) 365–373

    Google Scholar 

  87. Egorova M, Prins R. J. Catal. 224 (2004) 278.

    Google Scholar 

  88. Nagai M, Kabe T. J. Catal 1983; 81:440.

    Google Scholar 

  89. Bartsch R, Taniellian C. J. Catal. 35 (1974) 353.

    Google Scholar 

  90. Engelhard develops fuel sulfur removal. Fuel Cells Bulletin, Volume 2003, Issue 11, November 2003, Page 9.

    Google Scholar 

  91. Hernandez-Maldonado A J, Yang R T. Desulfurization of Commercial Liquid Fuels by Selective Adsorption via π-Complexation with Cu(I)-Y Zeolite. Ind. Eng. Chem. Res. 2003; 42: 3103–10.

    Google Scholar 

  92. Haji S, Erkey C. Removal of Dibenzothiophene from Model Diesel by Adsorption on Carbon Aerogels for Fuel Cell Applications. Ind. Eng. Chem. Res. 2003; 42: 6933–37.

    Google Scholar 

  93. Weitkamp J, Schwark M and Ernest S. J. Chem. Soc., Chem. Commun. (1991) 1133.

    Google Scholar 

  94. Yang R T, Takahashi A, Yang F H. Ind. Eng. Chem. Res. 40 (2001) 6236.

    Google Scholar 

  95. Takahashi A, Yang F H, Yang R T. Ind. Eng. Chem. Res. 42 (2002) 2487.

    Google Scholar 

  96. Larrubia M A, Gutierrez-Alejandre A, Ramirez J, Busca G A. Appl. Catal. A 224 (2002) 167.

    Google Scholar 

  97. Lee S H D, Kumar R, Krumpelt M. Sep. Purif. Technol. 26 (2002) 247.

    Google Scholar 

  98. Ma X, Sun L, Song C. Catal. Today 77 (2002) 107.

    Google Scholar 

  99. Hoogers G. Fuel Cell Technology Handbook. Boca Raton: CRC Press; 2003.

    Google Scholar 

  100. Hohlein B, Bee M, Bogild-Hansen J, Brockerhoff P, Colsman G, Emonts B, Menzer R, Riedel E. Hydrogen from methanol for fuel cells in mobile systems: development of a compact reformer. Journal of Power Sources 61 (1996) 143–147.

    Google Scholar 

  101. Austin G T. Shreve’s Chemical Process Industries. New York: McGraw-Hill; 1984.

    Google Scholar 

  102. Krumpelt M, Krause T R, Carter J D, Kopasz J P, Ahmed S. Fuel Processing for Fuel Cell Systems in Transportation and Portable Power Applications. Catal. Today 2002;77:3–16.

    Google Scholar 

  103. Holmblad P M, Wambach J, Chorkendorff I. J. Chem. Phys., 1995, 102, 8255.

    Google Scholar 

  104. Goodman D W. Acc. Chem. Res., 1984, 17, 194.

    Google Scholar 

  105. Hu J, Wang Y, VanderWiel D, Chin C, Palo D, Rozmiarek R, Dagle R, Cao J, Holladay J, Baker E. Chemical Engineering Journal 93 (2003) 55–60.

    Google Scholar 

  106. Ming Q, Healey T, Lloyd Allen, Irving P. Steam reforming of hydrocarbon fuels. Catalysis Today 77 (2002) 51–64.

    Google Scholar 

  107. Ziemlewski J I. Catalytic Steam Reforming of Diesel for Portable Fuel Cell Applications [dissertation]. University of Connecticut; 2003.

    Google Scholar 

  108. Katikaneni S, Yuh C, Abens S, Farooque M. The direct carbonate fuel cell technology: advances in multi-fuel processing and internal reforming, Catalysis Today, 2002, 77, 99–106.

    Google Scholar 

  109. Katikaneni S, Yuh C, Lee T, Farooque M. Operation of direct carbonate fuel cell with propane Preprints of Symposia-American Chemical Society, Division of Fuel Chemistry, 2003, 48, 854-x.

    Google Scholar 

  110. Bery R N. SNG from Naphtha Chemical Engineering, 1973, 80, 90–91.

    Google Scholar 

  111. Suzuki T, Iwamoto O, Kitahara T. Development of supported ruthenium catalyst for SNG process, 2001, 44, 183–187.

    Google Scholar 

  112. Ninomiya A, Sato M, Nishiguchi H, Ishihara T, Takita Y. Atmospheric production process for substitute natural gas from saturated hydrocarbons 1. Utilization of catalytic reaction for atmospheric methane formation, Kagaku Kogaku Ronbunshu, 1999, 25, 316–321.

    Google Scholar 

  113. Nagase S, Takami S, Hirayama A, Hirai Y. Development of a high efficiency substitute natural gas production process. Catalysis Today, 1998, 45, 393–397.

    Google Scholar 

  114. Ishigaki Y, Uba M, Nishida S, Inui T. Application of Co-Mn2O3-Ru Catalyst to the Process for Producing High-Calorie Substitute Natural-Gas from Coke-Oven Gas. Applied Catalysis, 1989, 47, 197–208.

    Google Scholar 

  115. Lorant F, Behar F, Vandenbroucke M, McKinney D E, Tang Y C. Methane generation from methylated aromatics: Kinetic study and carbon isotope modeling. Energy & Fuels, 2000, 14, 1143–1155.

    Google Scholar 

  116. Behar F, Budzinski H, Vandenbroucke M, Tang Y. Methane generation from oil cracking: Kinetics of 9-methylphenanthrene cracking and comparison with other pure compounds and oil fractions. Energy & Fuels, 1999, 13, 471–481.

    Google Scholar 

  117. Carrette L, Friedrich K A, Stimming U. Fuel cells-fundamentals and applications. Fuel Cells, 2001, 1, 5–9.

    Google Scholar 

  118. Wojtowicz M A, Katikaneni S, Privette R. The 2001 symposium on recent advances in fuel cells. Fuel, 2002, 81, 2147–2149.

    Google Scholar 

  119. Katikaneni S, Farooque M. The direct carbonate fuel cell technology-an overview. American Institute of Chemical Engineers, Spring National Meeting, 2003, 1689–1696.

    Google Scholar 

  120. Rostrup-Nielsen J, Christensen T S, Dybkjaer I. Studies Surf Sci Catalysis 1998, 113:81–95.

    Google Scholar 

  121. Advances in Automotive Reforming Technology. Fuel Cell Catalyst. Vol. 2, No. 2, Winter 2002.

    Google Scholar 

  122. Sun J, Qiu X, Wu F, Zhu W, Wang W, Hao S. Hydrogen from steam reforming of ethanol in low and middle temperature range for fuel cell application. International Journal of Hydrogen Energy 2004;29(10):1075–81.

    Google Scholar 

  123. Goula M, Kontou S, Tsiakaras P. Hydrogen production by ethanol steam reforming over a commercial Pd/γ-Al2O3 catalyst. Applied Catalysis B: Environmental 2004;49(2):135–44.

    Google Scholar 

  124. Batista M, Santos R, Assaf E, Assaf J, Ticianelli E. High efficiency steam reforming of ethanol by cobalt-based catalysts. Journal of Power Sources, Volume 134, Issue 1, 12 July 2004, Pages 27–32.

    Google Scholar 

  125. Brown L F. A comparative study of fuels for on-board hydrogen production for fuelcell-powered automobiles. International Journal of Hydrogen Energy 26 (2001) 381–397.

    Google Scholar 

  126. Llorca J, Ramiırez de la Piscina P, Dalmon J, Sales J, Homs N. CO-free hydrogen from steam-reforming of bioethanol over ZnO-supported cobalt catalysts Effect of the metallic precursor. Applied Catalysis B: Environmental 43 (2003) 355–369.

    Google Scholar 

  127. Liguras D, Kondarides D, Verykios X. Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Applied Catalysis B: Environmental 43 (2003) 345–354.

    Google Scholar 

  128. Comas J, Mariño F, Laborde M, Amadeo N. Bio-ethanol steam reforming on Ni/Al2O3 catalyst. Chemical Engineering Journal 98 (2004) 61–68.

    Google Scholar 

  129. Ioannides. Thermodynamic analysis of ethanol processors for fuel cell applications. Journal of Power Sources 92 (2001) 17–25.

    Google Scholar 

  130. Ogden J, Steinbugler M, Kreutz T, Journal of Power Sources 79-2 (1999) 143–168.

    Google Scholar 

  131. Docter A, Lamm A, Journal of Power Sources 84 (1999) 194–200.

    Google Scholar 

  132. Newson E, Truong T B. Low-temperature catalytic partial oxidation of hydrocarbons (C1-C10) for hydrogen production. International Journal of Hydrogen Energy 28 issue 12 (2003) 1379–1386.

    Google Scholar 

  133. Ahmed S, Krumpelt M, Kumar R, Lee SHD, Carter JD, Wilkenhoener R, Marshall C. Catalytic Partial Oxidation Reforming of Hydrocarbon Fuels. Fuel Cell Seminar. Palm Springs, California. Nov 16–19, 1998.

    Google Scholar 

  134. Naidja A, Krishna C R, Butcher T, Mahajan D. Cool flame partial oxidation and its role in combustion and reforming of fuels for fuel cell systems. Progress in Energy and Combustion Science 29 (2003) 155–191.

    Google Scholar 

  135. Galuszka J, Pandey R N, Ahmed S. Methane conversion to syngas in a palladium membrane reactor. Catalysis Today 46 (1998) 83–89.

    Google Scholar 

  136. Freni S, Calogero G, Cavallaro S. Hydrogen production from methane through catalytic partial oxidation reactions. Journal of Power Sources 87 2000 28–38.

    Google Scholar 

  137. Xu S, Zhao R, Wang X. Highly coking resistant and stable Ni/Al2O3 catalysts prepared by W/O microemulsion for partial oxidation of methane. Fuel Processing Technology (2004), in press.

    Google Scholar 

  138. De Jong K P, Schoonebeek R J, Vonkeman K A. Process for the Catalytic Partial Oxidation of Hydrocarbons. US Patent 5,720,901, 1998.

    Google Scholar 

  139. HydrogenSource demonstrates gasoline processor. Fuel Cell Bull. Volume 2003, Issue 6, Page 7 (June 2003).

    Google Scholar 

  140. Pereira C, Wilkenhoener R, Ahmed S, Krumpelt M. DOE Hydrogen Program Annual Review, July 2, 1999.

    Google Scholar 

  141. Pereira C, Bae J, Ahmed S, Krumpelt M. DOE Hydrogen Program Annual Review, May 9, 2000.

    Google Scholar 

  142. Edwards N, Ellis S R, Frost J C, Golunski S E, van Keulen A N J, Lindewald N G, Reinkingh J G. On-bored Hydrogen Generation for Transport Applications: The Hot-Spot Methanol Processor. J. Power Sources, 1998:7(1–2), 123–128.

    Google Scholar 

  143. Nuvera gasoline reformer achieves DOE targets. Fuel Cells Bulletin, Volume 2004, Issue 4, April 2004, Page 9.

    Google Scholar 

  144. Wang S, Lu G Q. J Chem Technol Biotechnol, 2000, 75, 589–595.

    Google Scholar 

  145. Borowiecki T, Denis A, Gac W, Dziembaj R, Piwowarska Z, Drozdek M. Oxidation-reduction of Ni/Al2O3 steam reforming catalysts promoted with Mo. Applied Catal. A. 2004:article in press.

    Google Scholar 

  146. Satterfield C N. Heterogeneous Catalysis in Practice. New York: Mc-Graw-Hill, 1980; 136–143.

    Google Scholar 

  147. Wanke S E, Flynn P C. Sintering of supported metal catalysts. Catalysis Reviews-Science and Engineering (1975), 12(1), 93–135.

    Google Scholar 

  148. Ruckenstein E, Sushumna I. Hydrogen effects in sintering of supported metal catalysts. Chemical Industries (Dekker) (1988), 31(Hydrogen Eff. Catal.), 259–91.

    Google Scholar 

  149. Fiedorow R M J, Chahar B S, Wanke S E. The sintering of supported metal catalysts: II. Comparison of sintering rates of supported Pt, Ir, and Rh catalysts in hydrogen and oxygen. Journal of Catalysis 1978;51(2): 193–202.

    Google Scholar 

  150. Sehested J. Sintering of nickel steam-reforming catalysts. Journal of Catalysis 217 (2003) 417–426.

    Google Scholar 

  151. Sehested J, Gelten J A P, Remediakis I N, Bengaard H, Nørskov J K. Sintering of nickel steam-reforming catalysts: effects of temperature and steam and hydrogen pressures. Journal of Catalysis 223 (2004) 432–443.

    Google Scholar 

  152. Rasmussen F B, Sehested J, Teunissen H T, Molenbroek A M, Clausen B S. Sintering of Ni/Al2O3 catalysts studied by anomalous small angle X-ray scattering. Applied Catalysis A: General 267 (2004) 165–173.

    Google Scholar 

  153. Chen H-W, Wang C-Y, Yu C-H, Tseng L-T, Liao P-H. Carbon dioxide reforming of methane reaction catalyzed by stable nickel copper catalysts. Catal. Today 2004: in press.

    Google Scholar 

  154. Kameoka S, Tanabe T, Tsai AP. Al-Cu-Fe quasicrystals for steam reforming of methanol: a new form of copper catalysts. Catal. Today 2004: in press.

    Google Scholar 

  155. Frusteri F, Freni S, Chiodo V, Spadaro L, Bonura G, Cavallaro S. Potassium improved stability of Ni/MgO in the steam reforming of ethanol for the production of hydrogen for MCFC. Journal of Power Sources 132 (2004) 139–144.

    Google Scholar 

  156. Frusteri F, Freni S, Spadaroa L, Chiodo V, Bonura G, Donato S, Cavallarob S. H2 production for MC fuel cell by steam reforming of ethanol over MgO supported Pd, Rh, Ni and Co catalysts. Catalysis Communications 2004;article in press.

    Google Scholar 

  157. Narusawa K, Hayashida M, Kamiya Y, Roppongi H, Kurashima D, Wakabayashi K. Deterioration in fuel cell performance resultingfrom hydrogen fuel containing impurities: poisoning effects by CO, CH4, HCHO, and HCOOH. JSAE Review 24 (2003) 41–46.

    Google Scholar 

  158. Urban P M, Funke A, Müller J T, Himmen M, Docter A. Catalytic processes in solid polymer electrolyte fuel cell systems. Applied Catal A 221 (2001) 459–470.

    Google Scholar 

  159. Patt J, Moon D J, Phillips C, Thompson L, Molybdenum Carbide Catalysts for Water-Gas Shift. Catal. Lett. 2000; 65(4): 193–5.

    Google Scholar 

  160. Bunluesin T, Gorte R J, Graham G W. Studies of the water-gas-shift reaction on ceriasupported Pt, Pd, and Rh: Implications for oxygen-storage properties. Applied Catalysis B: Environmental 15 (1998) 107–114.

    Google Scholar 

  161. Swartz S L, Seahaugh M M, Holt C T, Dawson W. Fuel Processing Catalysts based on Nanoscale Ceria. Fuel Cells Bulletin, Volume 4, Issue 30, March 2001, Pages 7–10.

    Google Scholar 

  162. Goerke O, Pfeifer P, Schubert K. Water gas shift reaction and selective oxidation of CO in microreactors. Applied Catalysis A: General 263 (2004) 11–18.

    Google Scholar 

  163. HydrogenSource demos noble WGS catalysts. Fuel Cells Bulletin, Volume 2004, Issue 3, March 2004, pages 8–9.

    Google Scholar 

  164. Gottesfeld S, Pafford J. J. Electrochem. Soc. 135 (1988) 2651.

    Google Scholar 

  165. Yoon W, Kim C, Han M, Park J, Jeong J. Abstracts of 2002 Fuel Cell Seminar, Palm Springs, CA, 18–21 November 2002, p. 639.

    Google Scholar 

  166. Echigo M, Tabata T. Appl. Catal. A 251 (2003) 157.

    Google Scholar 

  167. Rohland B, Plzak V. The PEMFC-integrated CO Oxidation-A Novel method of Simplifying the Fuel Cell Plant. J. Power Sources 1999; 84(2):183–6.

    Google Scholar 

  168. Sirijaruphan A, Goodwin J G, Rice R W. Effect of Fe promotion on the surface reaction parameters of Pt/µ-Al2O3 for the selective oxidation of CO. J. of Catal. 2004; 224:304–13.

    Google Scholar 

  169. Han Y-F, Kahlich M J, Kinne M, Behm R J. CO removal from realistic methanol reformate via preferential oxidation — performance of a Rh/MgO catalyst and comparison to Ru/Al2O3, and Pt/Al2O3. Appl. Catal. B 2004; 50: 209–18.

    Google Scholar 

  170. Gottesfeld S, Pafford J. J. Electrochem. Soc. A new approach to the problem of carbon monoxide poisoning in fuel cells operating at low temperatures 1988;135(10):2651–2652.

    Google Scholar 

  171. Alkire R C, Gerischer H, Kolb D M, Tobias C W. Polymer Electrolyte Fuel Cells in Advances in Electrochemical Science and Engineering. Volume 5. Wiley-VCH, New York, 1997; 219–225.

    Google Scholar 

  172. Fujita S-I, Takezawa N. Difference in the Selectivity of CO and CO2 Methanation Reactions. Chem. Eng. J. 1997; 68:63–68.

    Google Scholar 

  173. Echigo M, Tabata T. CO Removal from Reformed Gas by Catalytic Methanation for Polymer Electroyte Fuel Cell Applications. J. Chemical Engineering of Japan 2004; 37(1):75–81.

    Google Scholar 

  174. Echigo M, Tabata T. Development of novel Ru catalyst of preferential CO oxidation for residential polymer electrolyte fuel cell systems. Catal. Today 2004; 90: 269–75.

    Google Scholar 

  175. Xomeritakis G, Lin Y. S. Fabrication of a thin palladium membrane supported in a porous ceramic substrate by chemical vapor deposition. Journal of Membrane Science, Volume 120, Issue 2, 13 November 1996, Pages 261–272.

    Google Scholar 

  176. Cheng Y S, Yeung K L. Palladium-silver composite membranes by electroless plating technique. Journal of Membrane Science 158 (1999) 127–141.

    Google Scholar 

  177. Quicker P, Höllein V, Dittmeyer R. Catalytic dehydrogenation of hydrocarbons in palladium composite membrane reactors. Catal. Today 2000; 56(1–3):21–34.

    Google Scholar 

  178. Jayaraman V, Lin Y S, Pakala M, Lin R Y. Fabrication of ultrathin metallic membranes on ceramic supports by sputter deposition. Journal of Membrane Science 1995;99(1): 89–100.

    Google Scholar 

  179. Li Z Y, Maeda H, Kusakabe K, Morooka S, Anzai H, Akiyama S. Preparation of palladium-silver alloy membranes for hydrogen separation by the spray pyrolysis method. Journal of Membrane Science 1993;78(3):247–254.

    Google Scholar 

  180. Tosti S, Bettinali L, Castelli S, Sarto F, Scaglione S, Violante V. Sputtered, electroless, and rolled palladium-ceramic membranes. Journal of Membrane Science 2002; 196(2):241–249.

    Google Scholar 

  181. Kajiwara M, Uemiya S, Kojima T, Kikuchi E. Hydrogen permeation properties through composite membranes of platinum supported on porous alumina. Catalysis Today 2000; 56:65–73

    Google Scholar 

  182. Jayaraman V, Lin Y S. Synthesis and hydrogen permeation properties of ultrathin palladium-silver alloy membranes. Journal of Membrane Science 104 (1995) 251–262.

    Google Scholar 

  183. Uemiya S, Matsuda T, Kikuchi E. Hydrogen permeable palladium-silver alloy membrane supported on porous ceramics. Journal of Membrane Science 1991; 56(3):315–325.

    Google Scholar 

  184. Peachey N M, Snow R C, Dye R C. Composite Pd/Ta metal membranes for hydrogen separation. Journal of Membrane Science 1996; 111(1):123–133.

    Google Scholar 

  185. Chabot J, Lecomte J, Grumet C., Sannier J. Fuel clean-up system: poisoning of palladium-silver membranes by gaseous impurities. Fusion Technology 1988;14:614–18.

    Google Scholar 

  186. Emonts B, Bogild Hansen J, Loegsgaard Jorgensen S, Hohlein B, Peters R. Compact methanol reformer test for fuel-cell powered light-duty vehicles. J. Power Sources 1998; 71(1,2):288–293.

    Google Scholar 

  187. Lin Y M, Rei M H. An integrated purification and production of hydrogen with a palladium membrane-catalytic reactor. Catal. 1998; 44:343–349.

    Google Scholar 

  188. Kuroda K, Kobayashi K, O’Uchida N, Ohta Y, Shirasaki Y. Study on Performance of Hydrogen Production from city gas equipped with Palladium membranes. Mistubishi Juko Giho 1996; 33(5):346–349.

    Google Scholar 

  189. Lin Y M, Rei M H. Process development for generating high purity hydrogen by using supported palladium membrane reactor as steam reformer. International Journal of Hydrogen Energy 2000;25:211–219.

    Google Scholar 

  190. Venkataraman R, Kunz H R, Fenton J M. CO-Tolerant, Sulfided Platinum Catalysts for PEMFCs. Journal of the Electrochemical Society 2004;151(5):A710–15

    Google Scholar 

  191. Lakshmanan B, Huang W, Olmeijer D, Weidner JW. Polyetheretherketone Membranes for Elevated Temperature PEMFCs. Electrochemical and Solid-State Letters 2003;6(12):A282–5.

    Google Scholar 

  192. Katikaneni S, Yuh C, Abens S, Farooque M. The direct carbonate fuel cell technology: advances in multi-fuel processing and internal reforming. Catalysis Today, 2002, 77, 99–106.

    Google Scholar 

  193. Katikaneni S P, Yuh C Y, Lee T W, Farooque M. Operation of direct carbonate fuel cell with propane. Preprints of Symposia-American Chemical Society, Division of Fuel Chemistry 2003;48: 854.

    Google Scholar 

  194. Bery R N. SNG from Naphtha. Chemical Engineering, 1973, 80, 90–91.

    Google Scholar 

  195. Wojtowicz M A, Katikaneni S, Privette R. The 2001 symposium on recent advances in fuel cells. Fuel 2002;81:2147–2149.

    Google Scholar 

  196. Katikaneni S, Farooque M. The direct carbonate fuel cell technology-an overview. American Institute of Chemical Engineers, Spring National Meeting 2003; 1689–1696.

    Google Scholar 

  197. Katikaneni S, Yuh C, Abens S, Farooque M. The direct carbonate fuel cell technology: advances in multi-fuel processing and internal reforming. Catal. Today 2002;77:99–106.

    Google Scholar 

  198. LPG Premium Propane Newsletter, V.2, Issue 2, Fall/Winter (1998)

    Google Scholar 

    Google Scholar 

  199. Rostrup-Nielsen J R, Rostrup-Nielsen T. Cattech, 2002;6(4):150.

    Google Scholar 

  200. Larsen J H, Chorkendorff I. Surface Science Reports, 1999;35:163.

    Google Scholar 

  201. Twigg M V, Spencer M S. Deactivation of copper metal catalysts for methanol decomposition, methanol steam reforming and methanol synthesis. Topics in Catalysis 2003; 22(3–4):191.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Haji, S., Malinger, K.A., Suib, S.L., Erkey, C. (2006). Fuels and Fuel Processing. In: Sammes, N. (eds) Fuel Cell Technology. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/1-84628-207-1_5

Download citation

  • DOI: https://doi.org/10.1007/1-84628-207-1_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-974-6

  • Online ISBN: 978-1-84628-207-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics