Skip to main content

PEM Fuel Cells

  • Chapter
Fuel Cell Technology

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

PEM fuel cells use a proton conductive polymer membrane as electrolyte. PEM stands for Polymer Electrolyte Membrane or Proton Exchange Membrane. Sometimes they are also called polymer membrane fuel cells, or just membrane fuel cells. In the early days (1960s) they were known as Solid Polymer Electrolyte (SPE) fuel cells. This technology has drawn the most attention because of its simplicity, viability, quick start-up, and it has been demonstrated in almost any conceivable application, from powering a cell phone to a locomotive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

2.7 References

  1. F. Barbir, Fuel Cell Tutorial, presented at Future Car Challenge Workshop, Dearborn, MI, October 25–26, 1997

    Google Scholar 

  2. F. Barbir, PEM Fuel Cells: Theory and Practice, Elsevier Academic Press, New York, 2005

    Google Scholar 

  3. S. Gottesfeld and T.A. Zawodzinski, Polymer Electrolyte Fuel Cells, in R.C. Alkire, H. Gerischer, D.M. Kolb, and C.W. Tobias (Eds.) Advances in Electrochemical Science and Engineering, Volume 5, Wiley-VCH, New York, 1997

    Google Scholar 

  4. T.A. Zawodzinski, Jr., T.E. Springer, J. Davey, R. Jestel, C. Lopez, J. Valerio, and S. Gottesfeld, A Comparative Study of Water Uptake By and Transport Through Ionomeric Fuel Cell Membranes, Journal of the Electrochemical Society, Vol. 140, 1993, p. 1981–1985

    Article  Google Scholar 

  5. T.E. Springer, T.A. Zawodzinski, and S. Gottesfeld, Polymer Electrolyte Fuel Cell Model, Journal of the Electrochemical Society, Vol. 138, No. 8, pp. 2334–42, 1991.

    Article  Google Scholar 

  6. T.R. Ralph and M.P. Hogarth, Catalysis for Low Temperature Fuel Cells, Part I: The Cathode Challenges, Platinum Metals Review, Vol. 46, No. 1, pp.3–14, 2002

    Google Scholar 

  7. H.A. Gasteiger, W. Gu, R. Makharia and M.F. Mathias, Catalyst utilization and mass transfer limitations in the polymer electrolyte fuel cells, Electrochemical Society Meeting, Orlando, September, 2003

    Google Scholar 

  8. T.A. Zawodzinski, Jr., M. Eikerling, L. Pratt, R. Antonio, R. Tommy, M. Hickner, J. McGrath, Membranes for Operation Above 100°C, in Proc. 2002 National Laboratory R&D Meeting DOE Fuel Cells for Transportation Program (Golden, CO, May 9, 2002).

    Google Scholar 

  9. M.F. Mathias, J. Roth, J. Fleming and W. Lehnert, Diffusion media materials and characterization, in W. Vielstich, A. Lamm, and H.A. Gastegier (Eds.) Handbook of Fuel Cells, Fundamentals, Technology and Applications, Vol. 3 Fuel Cell Technology and Applications, pp. 517–537, John Wiley & Sons, Ltd., New York, 2003.

    Google Scholar 

  10. F. Barbir, J. Braun, and J. Neutzler, Properties of Molded Graphite Bi-Polar Plates for PEM Fuel Cells, International Journal on New Materials for Electrochemical Systems, No. 2, pp. 197–200, 1999

    Google Scholar 

  11. V. Mishra, F. Yang and R. Pitchumani, Electrical contact resistance between gas diffusion layers and bi-polar plates in a PEM fuel cell, Proc. 2nd Int. Conf. Fuel Cell Science, Engineering and Technology. Rochester, NY, 2004

    Google Scholar 

  12. T.N. Veziroglu and F. Barbir, Hydrogen Energy Technologies, UNIDO-Emerging Technologies Series, United Nations Industrial Development Organisation, Vienna, Austria, 1998

    Google Scholar 

  13. J.-H. Koh, K. Seo, C. G. Lee, Y.-S. Yoo, and H. C. Lim, Pressure and Flow Distribution in Internal Gas Manifolds of a Fuel Cell Stack, Journal of Power Sources, Vol. 115, 2003, pp. 54–65.

    Article  Google Scholar 

  14. V. Gurau, F. Barbir, and H. Liu, Two-Dimensional Model for the Entire PEM Fuel Cell Sandwich, in Proton Conduction Membrane Fuel Cells II, S. Gottesfeld and T.F. Fuller (eds.), Proc. Vol. 98-27, pp. 479–503, The Electrochemical Society, Pennington, NJ, 1999.

    Google Scholar 

  15. H. Naseri-Neshat, S. Shimpalee, S. Dutta, W.K. Lee and J.W. Van Zee, Predicting the effect of gas-flow channel spacing on current density in PEM fuel cells, Advanced Energy Systems Vol. 39, pp. 337–350, ASME, 1999

    Google Scholar 

  16. S. Um, C.-Y. Wang and K. S. Chen, 2000, “Computational fluid dynamics modeling of proton exchange membrane fuel cells,” J. Electrochem. Soc., Vol. 147, pp. 4485–4493, 2000.

    Article  Google Scholar 

  17. L. You and H. Liu, A two-phase flow and transport model for the cathode of PEM fuel cells, Int. J. Heat and Mass Transfer, 45, pp. 2277–2287, 2002

    Article  MATH  Google Scholar 

  18. S. Shimpalee, S. Greenway, D. Spuckler and J. W. Van Zee, Predicting water and current distributions in a commercial-size PEMFC, J. Power Sources, Vol. 135, pp. 79–87, 2004

    Article  Google Scholar 

  19. F. Barbir, M. Nadal, and M. Fuchs, Fuel Cell Powered Utility Vehicles, in Buchi, F. (editor), Proc. of the Portable Fuel Cell Conference (Lucerne, Switzerland, June 1999), pp. 113–126.

    Google Scholar 

  20. J. Tachtler, T. Dietsch, and G. Goetz, Fuel Cell Auxiliary Power Unit — Innovation for the Electric Supply of Passenger Cars, SAE Paper No. 2000-01-0374, in Fuel Cell Power for Transportation 2000 (SAE SP-1505) (SAE, Warrendale, PA, 2000), pp. 109–117.

    Google Scholar 

  21. D.A. Masten and A. D. Bosco, System Design for Vehicle Applications: GM/Opel, in W. Vielstich, A. Lamm, and H. Gasteiger (editors), Handbook of Fuel Cell Technology — Fundamentals, Technology and Applications, Vol. 4 (J. Wiley, New York, 2003), pp. 714–724.

    Google Scholar 

  22. R. Stone, Competing Technologies for Transportation, in G. Hoogers (editor), Fuel Cell Technology Handbook (CRC Press, Boca Raton, FL, 2003).

    Google Scholar 

  23. C.E. Thomas, B. D. James, F. D. Lomax, Jr., and I. F. Kuhn, Jr., Fuel Options for the Fuel Cell Vehicle: Hydrogen, Methanol or Gasoline? International Journal of Hydrogen Energy, Vol. 25, No. 6, 2000, pp. 551–568.

    Article  Google Scholar 

  24. Well-to-Wheel Energy Use and Greenhouse Gas Emissions of Advanced Fuel/Vehicle Systems, North American Analysis. Report by General Motors in cooperation with Argonne National Laboratory, BP Amoco, ExxonMobil and Shell, 2001.

    Google Scholar 

  25. Weiss, M. A., J. B. Heywood, E. M. Drake, A. Schafer, and F. F. AuYeung, On the Road in 2020. A Life-Cycle Analysis of New Automobile Technologies (Massachusetts Institute of Technology, Boston, 2000).

    Google Scholar 

  26. Fronk, M. H., D. L. Wetter, D. A. Masten, and A. Bosco, PEM Fuel Cell System Solutions for Transportation, SAE Paper No. 2000-01-0373, in Fuel Cell Power for Transportation 2000 (SAE SP-1505) (SAE, Warrendale, PA, 2000), pp. 101–108.

    Google Scholar 

  27. Hoogers, G., Automotive Applications, in G. Hoogers (editor), Fuel Cell Technology Handbook (CRC Press, Boca Raton, FL, 2003).

    Google Scholar 

  28. M. Croper, Fuel Cell Market Survey: Niche Transport, Fuel Cell Today, Article 823, June 2004: http://www.fuelcelltoday.com/FuelCellToday/FCTFiles/FCTArticleFiles/Article_823_NicheTransport0604.pdf (accessed February 2005)

    Google Scholar 

  29. F. Barbir, System Design for Stationary Power Generation, in W. Vielstich, A. Lamm, and H. Gasteiger (editors), Handbook of Fuel Cell Technology — Fundamentals, Technology and Applications, Vol. 4 (J. Wiley, New York, 2003), pp. 683–692.

    Google Scholar 

  30. F. Barbir, T. Maloney, T. Molter, and F. Tombaugh, Fuel Cell Stack and System Development: Matching Market to Technology Status, in Proc. 2002 Fuel Cell Seminar (Palm Springs, CA, November 18–21, 2002), pp. 948–951.

    Google Scholar 

  31. G. Hoogers, Portable Applications, in G. Hoogers (editor), Fuel Cell Technology Handbook (CRC Press, Boca Raton, FL, 2003).

    Google Scholar 

  32. A. Heinzel and C. Hebling, Portable PEM Systems, in W. Vielstich, A. Lamm, and H. Gasteiger (editors), Handbook of Fuel Cell Technology — Fundamentals, Technology and Applications, Vol. 4 (J. Wiley, New York, 2003), pp. 1142–1151.

    Google Scholar 

  33. S. Geiger and D. Jollie, Fuel Cell Market Survey: Military Applications, Fuel Cell Today, Article 756, April 2004: http://www.fuelcelltoday.com/FuelCellToday/FCTFiles/FCTArticleFiles/Article_756_MilitarySurvey0404.pdf (accessed February 2005)

    Google Scholar 

  34. K. Shah, W. C. Shin, and R. S. Besser, A PDMS Micro Proton Exchange Membrane Fuel Cell by Conventional and Non-Conventional Microfabrication Techniques, Sensors and Actuators B: Chemical, Vol. 97, No. 2–3, 2004, pp. 157–167.

    Article  Google Scholar 

  35. Y. Yamazaki, Application of MEMS Technology to Micro Fuel Cells, Electrochimica Acta, Vol. 50, No. 2–3, 2004, pp. 659–662.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Barbir, F. (2006). PEM Fuel Cells. In: Sammes, N. (eds) Fuel Cell Technology. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/1-84628-207-1_2

Download citation

  • DOI: https://doi.org/10.1007/1-84628-207-1_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-974-6

  • Online ISBN: 978-1-84628-207-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics