Skip to main content

Convection-dominated Problems

  • Chapter
  • 3105 Accesses

Part of the book series: Computational Fluid and Solid Mechanics ((COMPFLUID))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lagon JD. An Introduction to Nonlinear Partial Differential Equations. New York: John Wiley & Sons, 1994.

    Google Scholar 

  2. Evans LC. Partial Differential Equations. Philadelphia: American Society of Mathematics, 2000.

    Google Scholar 

  3. Fletcher CAJ. Computational Techniques for Fluid Dynamics. Berlin: Springer-Verlag, 1991.

    Google Scholar 

  4. Cockburn B. Discontinuous Galerkin Methods. School of Mathematics, University of Minnesota, 2003: 1–25.

    Google Scholar 

  5. Cockburn B. Discontinuous Galerkin Methods for Convection Dominated Problems. NATO Lecture Notes. School of Mathematics, University of Minnesota, 2001.

    Google Scholar 

  6. Tannehill JC, Anderson DA, Pletcher RH. Computational Fluid Mechanics and Heat Transfer. New York: Taylor & Francis, 1997.

    Google Scholar 

  7. Bender CM, Orszag SA. Advanced Mathematical Methods for Scientists and Engineers. Berlin: Springer-Verlag, 1999.

    Google Scholar 

  8. Moon TK, Stirling WC. Mathematical Methods and Algorithms for Signal Processing. Englewood Cliffs: Prentice Hall, 2000.

    Google Scholar 

  9. Zienkiewicz OC, Taylor RL, Sherwin SJ, Peiro I. On Discontinuous Galerkin Methods. Int. J. Numer. Meth. Eng. 2003; 58: 1119–1148.

    Article  MathSciNet  Google Scholar 

  10. Carey, GF, Oden JT. Finite Elements, Volume VI: Fluid Mechanics. Englewood Cliffs: Prentice Hall, 1986

    Google Scholar 

  11. Cockburn B, Shu CW. The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems. SIAM J. Numer. Anal. 1998; 35: 2440–2463.

    Article  MathSciNet  Google Scholar 

  12. Warburton T. Lecture Notes on Numerical Solution of Partial Differential Equations. University of New Mexico, 2003.

    Google Scholar 

  13. Boye WE, DiPrima RC. Elementary Differential Equations and Boundary Value Problems, 7th Ed. New York: John Wiley, 2004.

    Google Scholar 

  14. Cockburn B, Shu CW. TVB Runge-Kutta Local Projection Discontinuous Finite Element Method for Conservation Laws II: General Framework. Math. Comput. 1989; 52: 411–435.

    Article  MathSciNet  Google Scholar 

  15. Cockburn B, Lin SY, Shu CW. TVB Runge-Kutta Local Projection Discontinuous Finite Element Method for Conservation Laws III: One-Dimensional Systems. J. Comput. Phys. 1989; 84: 90–113.

    Article  MathSciNet  Google Scholar 

  16. Cockburn B, Hou S, and Shu CW. TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws IV: The Multidimensional Case. Math. Comput. 1990; 54: 545–581.

    Article  MathSciNet  Google Scholar 

  17. Cockburn B, Shu CW. The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V: Multidimensional Systems. J. Comput. Phys. 1998; 141: 199–224.

    Article  MathSciNet  Google Scholar 

  18. Biswas R, Devine K, Flaherty J. Parallel Adaptive Finite Element Methods for Conservation Laws. Appl. Numer. Math. 1994; 14: 255–283.

    Article  MathSciNet  Google Scholar 

  19. Kuzmin D, Turek S. High-Resolution FEM-TVD Schemes Based on a Fully Multidimensional Flux Limiter. J. Comput. Phys. 2004; 198: 131–158.

    Article  MathSciNet  Google Scholar 

  20. Shu CW, Osher S. Efficient Implementation of Essentially Non-oscillatory Shock Capture Schemes. J. Comp. Phys. 1988; 77: 439–471.

    Article  MathSciNet  Google Scholar 

  21. Harten A. On the Symmetric Form of Systems of Conservation Laws with Entropy. J. Comp. Phys. 1983; 49: 151–164.

    Article  MATH  MathSciNet  Google Scholar 

  22. Harten A, Lax PD, Van Leer B. On Upstream Differencing and Godunov-type Schemes for Hyperbolic Conservation Laws. SIAM Review. 1983; 25: 35–61.

    Article  MathSciNet  Google Scholar 

  23. Harten A. On a Class of High Resolution Total-Variation-Stable Finite-Difference Schemes. SIAM J. Numer. Anal. 1984; 21: 1–23.

    Article  MATH  MathSciNet  Google Scholar 

  24. Harten A, Engquist B, Osher S, Chakravarthy S. Uniformly High Order Accurate Essentially Non-oscillatory Schemes III. J. Comput. Phys. 1987; 71: 231–303.

    Article  MathSciNet  Google Scholar 

  25. Jameson A. Essential Elements of Computational Algorithms for Aerodynamic Analysis and Design. Tech. Rep. 97-68, Inst. Comput. Appl. in Sci. and Eng., NASA Langley Research Center, Hampton, Virginia, December 1997.

    Google Scholar 

  26. Leer BV. Towards the Ultimate Conservative Difference Scheme, V. A Second-Order Sequel to Godunov’s Method. J. Comput. Phys. 1979; 32: 101–136.

    Article  Google Scholar 

  27. Colella P, Woodward PR. The Piecewise Parabolic Method (ppm) for Gas-Dynamics Simulations. J. Comput. Phys. 1984; 54: 174–201.

    Article  MathSciNet  Google Scholar 

  28. Gottlieb, Shu CW. Total Variation Diminishing Runge-Kutta Schemes. Math. Comput. 1998; 67: 73–85.

    Article  MathSciNet  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2006). Convection-dominated Problems. In: Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer. Computational Fluid and Solid Mechanics. Springer, London. https://doi.org/10.1007/1-84628-205-5_5

Download citation

  • DOI: https://doi.org/10.1007/1-84628-205-5_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-988-3

  • Online ISBN: 978-1-84628-205-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics